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Abstract

Social scientists have long argued that images play a crucial role in politics. This role is
heightened by the bombardment of images that people experience today. Digitization
has both increased the presence of images in daily life and made it easier for scholars
to access and collect large quantities of pictures and videos. However, using images as
data for social science inference is an arduous task. Political scientists have therefore
often turned to other data sources and puzzles, leaving substantive theoretical questions
unanswered. Fortunately, recent innovations in computer vision can reduce the costs of
using images as data. The goals of this project are twofold. First, we build on existing
computer vision methods to present a set of automatic techniques that will aid political
scientists working with images. We highlight the potential of Convolutional Neural
Nets for automatic object recognition, face detection, and visual sentiment analysis.
Second, we apply these techniques to a novel dataset of Black Lives Matter Twitter
protest images, demonstrating the ability of computer vision methods to replicate gold
standard manual image labels.
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1 Introduction

Images play a crucial role in politics. They capture people’s attention, reduce information-

processing costs, improve information recall, and trigger strong emotional reactions (Graber

1996; Grabe and Bucy 2009). As a result, compared to other forms of communication such as

text, images have a larger impact on people’s political attitudes and behavior. For example,

newspapers images play a key agenda-setting and framing role (Gitlin 1980; Corrigall-Brown

and Wilkes 2012; Brantner, Lobinger, and Irmgard 2011), images of political candidates

affect people’s perceptions and votes (Rosenberg et al. 1986; Todorov et al. 2005), and images

related to contentious actions contribute to the diffusion of social movements and protests

(Raiford 2007; Kharroub and Bas 2015; Casas and Webb Williams 2017). The historian

Arthur Schlesinger argues that “photographs of Bull Connor’s police dogs lunging at the

marchers in Birmingham did as much as anything to transform the national mood and make

legislation not just necessary but possible"1 (Figure 1a). Reporters and White House officials

also say that Trump was moved to strike Syria by ‘disturbing’ images of young children killed

by poison gas2 (Figure 1b). Staff members describe the president as a ‘visual learner’ and

“ask for his intelligence briefings to include graphics and pictures in lieu of large blocks of

texts.” 3

Prior analysis of images in the political arena tend to rely on experimental research

designs, which allow for clear causal inference. But real life political images often combine

multiple theoretical treatments, making observational studies a must if we wish to understand

how images impact individuals. In short, observational studies with high external validity are

needed to complement experimental and small-n work with high internal validity. However,

although people today are bombarded with more images than ever before in human history,

systematic large-n studies of images in political life are rare (see for some preliminary studies
1http://100photos.time.com/photos/charles-moore-birmingham-alabama
2http://abcnews.go.com/International/trump-moved-strike-syria-disturbing-images-white-house/

story?id=46660978&cid=clicksource_4380645_9_big_feature_bf_hed
3http://www.dailymail.co.uk/news/article-4392250/Ghastly-mages-Syrian-attack-led-Trump-face.

html
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(a) Police dogs attacking an African Amer-
ican protesting citizen in Birmingham, Al-
abama, 1963.

(b) Father holding his dead twins in Syria
after a poison attack, 2017.

Figure 1: Two pictures credited with affecting political behavior.

Kharroub and Bas 2015; Anastasopoulos et al. 2016; Casas and Webb Williams 2017). This is

in part due to the large costs associated with manually labeling even small datasets of images

for political science inference. We present a set of supervised computer vision methods to

efficiently and automatically label large datasets of images. We use a novel dataset of social

media images related to a Black Lives Matter protest to illustrate how computer vision

techniques can be used to study what is in an image, who is in an image, and what emotions

an image evokes.

Our paper provides an introduction to cutting edge computer vision research, with an

emphasis on supervised deep-learning classifiers using Convolutional Neural Networks.4 Ac-

cessing these tools requires some start-up effort, but as we demonstrate, the potential payoff

is quite high: accurate results can be achieved even when using only a few labeled cases.

Following conventions in machine learning research, we test the accuracy of our visual clas-

sifiers using computational “experiments.” We provide an algorithm with a sample of images

for which we already have human-generated, manual, gold standard labels. Prior to labeling,
4Computer vision is the broad branch of computer science that deals with images. Automatic image

processing is a growing portion of the field.
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pre-processing steps include standardizing image size and removing duplicate images from

the sample. The generated labels and corresponding images are then partitioned into a train

and test set. The algorithm learns from the training set which image features are associated

with a particular label (or classification). The trained algorithm then provides a predicted

label for the held-out test set images. Comparing the predicted labels for the test set to their

known, gold standard labels allows us to evaluate the accuracy of the algorithm. Once an

algorithm is satisfactorily validated by predicting held-out labeled images, researchers can

use the trained algorithm to automatically label any remaining, unlabeled images.5

To demonstrate the potential for CNNs in political science research, we first highlight a

few areas of study where labeling and understanding images is of particular importance. We

then describe CNNs, with a focus on three particular applications: object recognition, face

recognition, and visual sentiment analysis. Finally, we test the methods on observational

data from a Black Lives Matter protest, conducting three separate experiments, one for each

computer vision task. Our goal is to see to what extent we are able to replicate our manual

image labels using automatic, techniques.

2 Images in Political Science Research

Why might social scientists wish to work with images as data? And why might they want to

work with large quantities of images, such that manually labeling images becomes infeasible?

The study of images is not a new phenomenon in social science research. Scholars in subfields

of communications, geography, sociology, history, economics and political science are well

aware of the power of images in shaping and reflecting the human experience. In particular,

a substantive literature shows how visuals do a better job than written and spoken content

in capturing people’s attention, facilitating information-processing, improving information

recall, and evoking emotions. Political science research shows the particular political effects
5The train-test strategy is a common approach and will be familiar to those used to working with text as

data and other machine learning subfields, see for example Benoit et al. (2016).
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of these characteristics. Some studies use images as outcome variables (whether their aim is

descriptive, predictive, or causal) and others use images as explanatory variables (examining

how visual inputs relate to some attitudinal or behavioral outcome of interest).

What is new, however, is the digitization of images, the mass adoption of smart phones,

and the omnipresence of the Internet, which combine forces to provide vast corpora of images

for research. Existing literature on visual effects is mostly based on experimental and small-

n studies. Although these offer incredibly valuable findings, their generalizability is often

unclear: findings from small-n studies may not apply in other cases and contexts, and find-

ings from experimental research may not apply in cases where single images contain multiple

theoretical treatments. This brings us to argue that large-n visual studies are a must. Accord-

ingly, our focus here is less on clean uses of single images as data (e.g. showing an image as

an experimental treatment or using a historical map to demonstrate migration patterns) and

more on the messy masses of observational digital images. These masses, if properly treated

using computer vision methods, open up new avenues for broad social science research.

2.1 Why Images Matter

When exposed to political information containing both images and text, people tend to pay

more attention to the images. As an example, Dahmen (2012) uses eye-tracking technology

to study “Photographic Framing in the Stem Cell Debate.” Experiment participants are

exposed to a print news article with an embedded image that changes depending on the

treatment. A key finding is that, independently of the treatment group, the images tend to

be the first element that participants pay attention to. They first look at the picture for few

seconds before moving to the text. The average first fixation time (the time it takes for a

participant to look at the image when exposed to the news article) ranges between .25 and

1.15 seconds.

Visual information moreover is easier to recall than text. This is commonly known in psy-

chology and cognitive research as the picture-superiority effect (Paivio, Rogers, and Smythe
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1968; Nelson, Reed, and Walling 1976). As an example, Paivio, Rogers, and Smythe (1968)

expose experiment subjects to a battery of familiar objects (one object at a time every two

seconds e.g.) and ask them afterwards to list the objects in order. A group of participants is

exposed to the objects’ name while the others are exposed to pictures of the objects. Recall

is higher for the group exposed to images.

Authors argue that this visual dominance happens because it is easier for people to

process images than text. Grabe and Bucy (2009) explain that images are processed in a

highly developed and specialized part of the brain, the visual cortex, whereas no specialized

part exists for processing text, making it a much harder task. Messaris and Abraham (2001)

also point out that images have an ‘analogical quality.’ They resemble the real world and it

is easier for people to index and access information learned from visuals.

Finally, compared to other forms of communication, images trigger stronger emotional

reactions to people. As an example, Iyer and Oldmeadow (2006) conduct an experiment

studying emotional reactions to news stories and their effects on political attitudes. The

authors expose some subject participants from the United Kingdom to a news article about

the kidnapping of a British citizen, Kenneth Bigley. Three treatment groups see the article’s

text plus an embedded image (images evoking fear, sympathy, and anger) and a control group

only sees the text. The authors show that the treatment groups have stronger emotional

reactions to the news story than the control.

In sum, from this literature it becomes clear that images have particular qualities that

make them different than other communication forms such as text. What are the political

effects of these particular qualities? In the next two sections we discuss visual political

effects by distinguishing between lines of political inquiry interested in images as outcome

variables and political research interested in the explanatory power of images. The discussion

highlights prior experimental and small-n work while suggesting how big data image research

using observational data could supplement these studies.
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2.2 Images as Dependent Variable

Large-n observational studies of images as outcome variable are of particular relevance to

scholars studying the issues and issue attributes that draw the attention of citizens, political

groups, and elites. An extensive agenda-setting and framing literature conducts observa-

tional studies with the text of news articles to build outcome variables measuring issues and

frames (McCombs and Shaw 1972; Entman 1991; Durham 1998; Baumgartner, De Boef, and

Boydstun 2008). However, given that people have a tendency to pay more attention, recall,

and process images than text, observational agenda-setting and framing studies should incor-

porate image features as part of their outcome variables. Some initial small-n studies exist

studying the visual content of news articles and broadcasts. Corrigall-Brown and Wilkes

(2012) study newspaper images of a collective action in Canada to conclude that, whereas

textual content confirmed the “protest paradigm,”6 protesters were equally likely to be present

in the images and only some government authorities received high visual media coverage. In

another study, Rohlinger and Klein (2012) look at how different news sources cover several

abortion-related protests to find that visual content is very similar across outlets and events.

De Vreese, Peter, and Semetko (2001) study for ten days how TV news from different Euro-

pean countries framed the adoption of the Euro to find that in most countries it was framed

as an economic issue, although some interesting cross-country variation existed. Computer

vision techniques would allow scholars to expand their sample size of images. Instead of

studying a period of ten days, the study could be extend to ten months. News coverage

analyses could expand their samples from single protests to a range of different protests,

with computers automatically labeling images on the protests from a variety of sources over

a long time period.

Scholars could also use images as a source of information in building factual dependent

variables (separate from framing variables). Images can help us estimate the size of an

inauguration crowd, for example. Pictures from a variety of angles and times of day could be
6The marginalization of protesters and special salience of government authorities in media coverage of

protests.
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automatically compiled and analyzed to produce an aggregate person count. And scholars of

economic development increasingly use nighttime satellite images to proxy for development,

where brighter footprint indicates a better-off town or village (newer analyses of luminosity

data use CNNs, see Jean et al. 2016.)

2.3 Images as Independent Variable: Attitude and Behavior

As above, a basic research treatment of images as an independent variable might ask about

the descriptive, predictive, or causal effect that the presence of an image could have on

an outcome of interest. A more complex research question would ask which features of

images have particularly strong effects. Following a traditional divide in political science,

one might ask how the type and content of images are associated with variation in attitudes

and behaviors.

Experimental and small-n studies show the potential of images for shaping political at-

titudes. In the Iyer and Oldmeadow (2006) experiment, the authors find that news stories

about Kenneth Bigley’s kidnapping that had an embedded image not only triggered stronger

emotional reactions, but they also had a significant effect on people’s opinion about whether

the UK government should negotiate with terrorists. Other research finds for example that

pictures of political candidates affect people’s evaluations. Todorov et al. (2005) show ex-

periment participants headshots of pairs of candidates running for a United States House or

Senate seat between 2000 and 2004, and then ask them to evaluate each candidate’s compe-

tence. Only based on appearance, participants tend to systematically evaluate one candidate

as being more competent than the other.7 In another experiment Wright and Citirn (2011)

find that participants exposed to an image of immigrants holding the American flag hold

more positive attitudes towards immigration than subjects exposed to the same image show-

ing the Mexican flag. Automatic image labeling techniques would open a wider range of cases

for analyses of these effects. For example, the Wright and Citirn (2011) piece could have ex-
7Experiment participants only evaluated candidates they did not recognize and knew nothing about ex

ante.
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amined how many actual images from a given protest contained American flags by scraping

large quantities of social media data. The Iyer and Oldmeadow (2006) experiment could have

been supplemented by a massive automated analysis of newspaper images to determine how

often images did in fact accompany relevant articles.

Research also shows the potential of images for shaping political behavior (Rosenberg

et al. 1986). In the Todorov et al. (2005) experiment, 70% of the candidates evaluated as

the most competent by only looking at their image were the actual winners of that House

or Senate seat. Moreover, the visual evaluations were not only strongly correlated with the

winners but also with the margin of victory. In a recent study that we discuss in more detail

in a following section, we find that social media images related to a Black Lives Matter

(BLM) protest and to the overall BLM movement explain in part variation in both attention

to and diffusion of the movement online.

Most of the existing literature is based on experimental and small-n designs. Manually

labeling images is costly, making the potential to automatically label images appealing. Re-

cent computer science developments in deep learning now make this feasible (LeCun, Bengio,

and G. Hinton 2015). In the following section, we introduce the field of computer vision and

Convolutional Neural Nets.

3 Computer Vision for Social Scientists

The field of computer vision has grown by leaps and bounds in the last decade. Some

common goals in computer vision research include object detection/recognition, face detec-

tion/recognition, and visual sentiment analysis. While there are certainly other branches of

computer vision that may be of interest to social scientists, we have found these three tasks

to be particularly relevant. Recent advances in deep learning have contributed to radically

improve accuracy in each of these three subfields. Today most computer vision research is

based on convolutional neural networks (shortened to CNNs or ConvNets), a type of neural
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network perfectly designed to use images as inputs. In the rest of this section we go over

the basics of deep learning and CNNs, and highlight the most relevant research on object

recognition, face recognition, and visual sentiment analysis.8

3.1 Deep Learning and Convolutional Neutral Networks:

The Basics

Deep learning algorithms use non-linear models to transform raw input (e.g. any data matrix,

known as the input layer) into abstract representations (hidden layers) in order to learn from

new features and better predict outcomes. Imagine a 1000x2 matrix X with information

about the height and gender (columns) of 1000 people (rows). Imagine another 1000x1 matrix

Y with information about how fast these 1000 people run a half-marathon. In conventional

machine learning we could try to predict their finish time given their height and gender using

for example a simple linear model (Y = Xβ) and finding a 2x1 coefficient matrix β that

minimizes predictive squared error (Ordinary Least Squares regression).9 However, if our

interest is prediction, and not to study the specific associations (βs) between height and

gender on the outcome, we could also use a neutral network to improve predictive accuracy.

First we would transform the raw data X into an intermediate abstract representation X2

by applying the dot product between X and a 2x20 (e.g.) parameter matrix W1, and then

we would apply the dot product between the resulting X2 and a 20x1 matrix W2 to create a

vector of predictions Ŷ of the same size (1000x1) as the outcome Y . We would then find W1

andW2 that minimize predictive error (loss), and take advantage of the new 1000x20 abstract

intermediate feature matrix X2 to learn more about the input and perform more accurate

predictions. We would also add a non-linear transformation ofX2 in order to improve fit, for a

final model that could look as follows: Y = max(0, XW1)W2, where X2 = max(0, XW1) and
8Resources to learn more about CNNs are increasingly available online. The authors par-

ticularly recommend the posted materials accompanying Stanford University’s CS231n course at
http://cs231n.stanford.edu/.

9For simplicity this omits that the X matrix should include a columns of 1s and the β matrix an extra
first parameter in the first row in order to account for the bias or intercept parameter.

10



max(0, X2) is a non-linearity often used in deep learning. The parameter matricesW1 andW2

(known as weights) are usually learned via Stochastic Gradient Descent (SGD) and chain rule

is used to derive the gradient. This means that we run the model multiple times (iterations),

updating the weight parameters (forward propagation) and calculating the gradient (backward

propagation) each time, until the model loss reaches a point of convergence.

A neural net has as many layers as the number of intermediate representations plus

the output layer. The previous example is a two-layer network because it only has one

intermediate representation (X2) plus the model predictions (Ŷ ). The previous is also an

example of a network with fully-connected layers because we apply the dot product between

all units of a given layer (e.g. each data row in the input layer: {x1, x2, ..., x1000}) and each

unit of the following layer (e.g. each parameter in the parameter matrixW1: {w1, w2, ..., }).10

A convolutional neural network (CNN) is simply a type of neutral net with two main par-

ticularities. First, the inputs have 3 dimensions. In the previous example, the input had only

two: the number of rows (1000) and columns (2) of the dataset. However, computer vision

researchers parse images into pixels and then represent each pixel as a triplet of red, green,

and blue (RGB) intensities (depth). This means that each image x has three dimensions:

pixel width, pixel height, and three color channels (e.g. 224x224x3), where x1,1,1 contains for

example information about the red intensity of the pixel in the top left corner of the image

and x1,1,2 contains information about the green intensity of the same pixel. Each pixel in-

tensity representation xi,j,z is usually a standardized integer ranging from 0 to 255. Figure 2

provides an illustration of how a one-dimensional image is translated into a three-dimensional

RGB input.
10See LeCun et al. (2015) and Schmidhuber (2015) for a more extensive overview of deep learning.
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Figure 2: An example of an image represented as a 3-dimension input

A second characteristic of a CNN is that most layers of the network are not fully connected

to the previous layer: these are known as convolutional layers. Instead, the weights in these

layers (known as filters) are of a smaller width and height than the input (e.g. 3x3x3 instead

of 6x6x3) and they are only fully connected to a particular local region of the input at a time.

This reduces the number of parameters to estimate and significantly decreases computation

time. Dot products are computed between the filter parameters and all possible regions of the

input by “sliding" the filter along its width and height, summing up the outcomes to create an

output volume that becomes a new input in the following layer. Figure 3 for example shows

a 3x3 filter sliding horizontally and vertically across what could be the Green pixel-intensity

representation of a 6x6x3 image.

Figure 3: An example of a filter sliding in a convolutional. Credit: PyImagesSearch.

Apart from convolutional layers and some fully-connected layers at the end of the network,
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there are two other type of layers often used in CNNs: pooling and ReLu layers. Pooling

layers are used to reduce the size of the weights (parameter matrices) in order to facilitate

estimation and speed up computation. ReLu layers apply a non-linear transformation (f(x) =

max(0, x)) to the output of convolutional layers in order to improve fit.

In sum, this complex infrastructure of weights, non-linear transformations, and interme-

diate representations of the raw input allow CNNs to learn about very specific pixel-level

features that help predict the outcome (such as an object class, a person, and an emotion

class). CNNs with high predictive accuracy are usually trained with hundreds of thousands

(or even millions) of images and have a substantive number of layers. A common training set

for a 1,000 class object classification task, ImageNet, has 1.3 million high-resolution images,

and some commonly used CNNs for object classification have tens (e.g. VGG16 and VGG19)

or even hundreds of layers (ResNet for example has 152 layers). The size of the training set

and the depth of this CNNs mean that powerful machines with multiple graphics process-

ing units (GPUs) and high computational power are needed for training. However, training

CNNs from scratch is often unnecessary. Computer vision scholars often share their highly

accurate trained CNNs (such as LeNet, AlexNet, VGG16, and VGG19). Then others can

and adapt them to perform different classification tasks, such as predicting a binary instead

of a 1,000 class outcome, by simply changing the last fully connected layer of the network and

some minor re-training parameters. This form of transfer learning is known as fine tuning

and allow others to also achieve high predictive accuracy by using much smaller training sets

and less training time and resources.

4 Three Applications of CNNs for Images as Data

In this paper, we focus on three applications of CNNs that have the potential to automatically

assign the type of image labels that are of interest to social scientists.
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4.1 Object Recognition

Early computer vision object recognition methods had difficulty distinguishing between cats

and dogs (e.g. Golle 2008). With the help of CNNs, they can now accurately label a wide vari-

ety of objects and even identify multiple objects within a single image (Krizhevsky, Sutskever,

and G. E. Hinton 2012; Ordonez et al. 2013; H. Li et al. 2015; Russakovsky, L.-J. Li, and

Fei-Fei 2015; Chen et al. 2015), see Figure 4 for an example. For social scientists, object

recognition could be used to determine the presence or absence of features with theoretical

importance. For example, images could be analyzed to detect whether flags are present at

a protest, perhaps as a supplement to experimental studies about support for immigration

policies (Wright and Citirn 2011). The gold standard labeling process would ask annotators

to label for objects that are relevant to the political mechanisms of interest (such as crowds

of people carrying protest signs or flags). Researchers could also take advantages of existing

corpora of labeled images, such as ImageNet, though specific political objects of interest may

not be part of existing data sets.

Figure 4: Object Recognition using a CNN trained with ImageNet data (from Krizhevsky,
Sutskever, and G. E. Hinton 2012)

4.2 Face Detection and Recognition

CNNs and other methods such as the Viola-Jones algorithm and Haar Cascades can be used to

accurately detect and count faces (Zhu and Ramanan 2012; H. Li et al. 2015; Anastasopoulos
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et al. 2016). Figure 5 provides an example. These methods can be used to count the number

of people present in an image.

Figure 5: Li et al’s 2015 Face Detection algorithm (from H. Li et al. 2015)

Once faces have been detected in an image, researchers can use CNNs for face recognition,

or noting the presence of specific persons in an image. As we demonstrate below, CNNs can

be trained to recognize specific individuals with a high degree of accuracy using the train-

test method with manual labels. In our case, as a preliminary step, we are attempting to

recognize individuals without face detection (essentially conducting an object recognition

test but with a specific person as the object). Researchers interested in face recognition

could also access existing sets of important faces, such as Guo et al.’s (Guo et al. 2016) one

million images of 100,000 celebrities, to see if famous faces appear in their images. Manual

face recognition is already done for Kremlinology-type analyses of images from North Korea

(Fisher and Patel 2017); CNNs offer the possibility of scaling that recognition up to enormous

corpora of images.

4.3 Visual Sentiment Analysis

Recent CNNs trained with pixel-level and image-level features (objects automatically de-

tected in the images) now do a moderately good job of predicting the emotions humans

report when observing images (60-70% accuracy) (Peng et al. 2015; You et al. 2015). This

ability to connect image attributes to emotions represents a significant advance over prior

sentiment methods that focused exclusively on facial expressions (such as Microsoft’s Emo-

tion API). The ability to automatically label images with evoked emotions has a great deal

of potential for political psychology scholars. For training, scholars might turn to existing la-
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beled datasets such as Cornell’s Emotion6. However, existing datasets and analysis are often

based on very clean images, see Figure 6 for an example. When applying these methods to

messy, real data, such as the Twitter images we collected from a Black Lives Matter protest,

visual sentiment analysis becomes both more interesting and more difficult.

Figure 6: Visual Sentiment Analysis using CNN (from Peng et al. 2015)

5 A Political Science Application: Black Lives Matter

Images

The following example, based on our own prior work, demonstrates the importance of study-

ing images and their characteristics as independent variables in order to understand a polit-

ical phenomena of interest. We discuss the challenges of manually labeling images and the

potential of computer vision methods to replicate manually labeled results.11

5.1 Original study

Our aim in the project was to test the power of images in mobilizing online social movement

participation. While a number of prior scholars have argued that images are instrumental for

protest and social movement participation in the digital media age (Bimber, Flanagin, and

Stohl 2005; Castells 2012; Bennett and Segerberg 2013; Kharroub and Bas 2015; Howard and

Hussain 2013), systematic studies of political images, or images in general, in social media
11The complete paper can be accessed at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=

2832805.
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are rare. How might images shared via social media matter for online social movement

mobilization?

To avoid selection on the dependent variable (e.g., retroactively choosing a protest or

movement with particularly moving images), we decided to study a protest before knowing

whether it would take off or whether it would have any images involved. The protest of

interest was held on April 14, 2015 and was supported by the Black Lives Matter movement

(BLM). Research in political psychology and political behavior led us to expect that images

could motivate protest mobilization in three main ways, as summarized briefly below.

Emotional Trigger Mechanism: Emotions have been found to be important pre-

dictors of political behavior (Lasswell 1930; Janis and Mann 1977; Sears 1987), including

support for parties, protests, and extremist groups (Melucci 1996; Victoroff 2005; Goodwin

and Jasper 2006; Valentino et al. 2011). There are five politically-relevant emotions that

political psychology research has been able to distinguish both theoretically and empirically:

anger, fear, sadness, enthusiasm, and disgust (Ekman 1992; Marcus, Neuman, and MacKuen

2000; Valentino et al. 2011; Clifford and Wendell 2016). We built on this existing literature

to hypothesize that the emotionally evocative nature of images would contribute to their

mobilizing effects, especially those images evoking enthusiasm, fear, anger, and sadness.

Expectation of Success Mechanism. The prisoners’ dilemma poses a puzzle for social

movements: free riding should cause such movements to fail. Classic rational-choice theory

predicts that individuals will invest time and resources only if they expect their efforts to

significantly impact group success (Olson 1965). We therefore expected to find that images

of protest crowds, involving large numbers of people, would act as a trigger for expectations

of success.

Social Identity Mechanism. People are social beings and groups can provide a sense

of belonging. The desire for a “positive self concept” leads people to seek out and support

the in-groups with which they identify (Tajfel 1981; Tajfel 1982). Images of the Egyptian

flag and the Muslim Crescent helped to increase support for dissident groups during the
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Arab Spring (Kharroub and Bas 2015, 7). We expected to find that group symbols, such as

religious icons, raised fists, flags, and logos would increase participation among people who

identify with those groups.

There is a fourth theoretical mechanism that we did not explore in the original study,

the Cue-Taking Mechanism. Rational choice theory also predicts that rational citizens

will rely on the judgments of trusted experts or opinion leaders in lieu of becoming polit-

ically informed (Downs 1957). Many subsequent studies offer evidence of the importance

of heuristics and cue-taking in public opinion formation (Katz and Lazarsfeld 1955; Zaller

1992; Nisbet and Kotcher 2009), voting and political participation (Lupia 1992; Shachar and

Nalebuff 1999) and protest movements (Obserschall 1973; McCarthy and Zald 1977). How-

ever, additional research finds that cue-taking may depend on prior beliefs and how different

individuals process information (Kuklinski and Hurley 1994). We therefore also expect that

images of admired opinion leaders could contribute to the diffusion of online mobilizations.

The goal of this paper is not to discuss the validity of these theoretical mechanisms nor the

findings of the original study, but to see to what extent we are able to replicate our manual

image labels using automatic techniques. We focus on using computer vision methods to

automatically label images for the presence of protests (Expectation of Success mechanism),

for the presence of a particular opinion leader, John Legend (Cue-Taking mechanism), and

for the emotions images evoke (Emotional Trigger mechanism).

5.2 Data Collection and Manual Annotation

For a two week period around an April 14, 2015 BLM protest (“Shutdown A14”), we collected

all Twitter messages related to the protest (about 150,000 tweets).12 We then extracted and

manually labeled all of the 9,500 unique images that were included in the tweets. Each of
12We collected messages mentioning at least one of the following keywords and hashtags: #shutdownA14,

murder by police, mass incarceration, shutdownA14, killer cops, police murder, #A14, stop business as usual,
stolenlives, massincarceration, stolen lives, #policebrutality #stolenlives, #blacklivesmatter, black lives. We
designed the list of keywords and hashtags by looking at the phrases and hashtags promoted online by the
organizations responsible for the protest.
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the 1,000 most-tweeted images were labeled by two undergraduate research assistants and

between three and eight additional crowd-sourced assistants (recruited from Amazon’s Me-

chanical Turk). The remaining images were labeled by just one Mechanical Turk annotator.

Each was labeled for the number of people guessed to be in the image, the presence of sym-

bols and logos, and for the the degree (scale of 0-10) of fear, anger, disgust, sadness and

enthusiasm it evoked in the annotator. Information about the number of people present in

the image and the emotional responses for images that were labeled by more than one person

were averaged across annotators to generate a single score per image. For this paper we

removed image files that were of a very small size (smaller than 5kb) from the analysis since

they may add confusion when training computer vision algorithms. The final image dataset

contains 8,148 unique images with labels for the number of people present in the picture

(numeric), whether symbols and logos are present (binary), and five emotion scores (ranging

from 0 to 10 for each emotion). We use these images to perform 3 computational experiments

testing the extent to which CNNs can be used to predict: (1) images of protests, (2) images

of a particular opinion leader (the singer John Legend), and (3) the emotions that images

evoke.

5.3 Data for Computational Experiment (1): Predicting Images of

Protests

In the original study we argued that images of people protesting and actively supporting

the movement on the street fostered online mobilization because they increased expectations

of success about the movement. We used the manual labels provided by the annotators to

detect which images showed on-street protests. We specifically considered an image to be

about a protest if the annotators said the picture had numerous people plus a symbol or

a sign. In this first computational experiment we are interested in automatically detecting

protest images to replicate our manual labels.

We train the algorithm with true positives and true negatives: true positive images of
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protests and true negative images that are not showing any protest. We select 100 true

positives from the dataset of 8,148 images by first selecting those images annotators reported

to have more than 10 people and also a sign and/or a symbol, and then by selecting from

that pool 100 images that clearly show a protest/demonstration. We then select 100 true

negatives from the remaining images that have less than 10 people in them and have no sign

nor symbol. The top row in Figure 7 contains four examples of the true positives we use to

train the protest classifier, and the bottom row contains four examples of the true negatives.

Figure 7: Examples of images used as true positives and true negatives to train a computer
vision binary classifier predicting images of protest/demonstrations

5.4 Data for Computational Experiment (2): Predicting Images of

an Opinion Leader (John Legend)

When exploring the collected messages we noticed that a substantial amount of them had

images of known people who explicitly supported the BLM movement prior to the protest

(such as John Legend) and of known people who were actively involved in the organization

of the April 14, 2015 mobilization (such as Dr. Cornel West). We want to know if we can use

computer vision techniques to automatically detect the presence of an opinion leader. We

focus here on predicting images of John Legend. The American singer and songwriter had

given an speech against U.S. incarceration policies when accepting the Oscar for best original

song at the 87th Academy Awards, about a month before the studied protest, becoming one of

the front faces of the “Stop Mass Incarceration" movement during the April 2015 mobilization.
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We want to train a computer vision algorithm to predict whether a given image is a

picture of John Legend or not, so we construct a dataset of true positive and true negative

images to train the algorithm. The Cue-Taking mechanism was not part of the original

study and we did not have information about whether a well-known person was present in

our BLM images, but we went through the 8,148 images selected for this study one more

time and searched for images of John Legend. We found 29 unique images. These were either

headshots or images of him singing or standing alone. To increase the size of the training

set, we also collected another 71 similar images of him from a Google image search, ending

with a set of 100 true positives. We then selected similar images (headshots and pictures of

a single person standing) from our BLM dataset (n = 50) and from the Internet (n = 50) to

use as true negatives.

Figure 8 contains some examples of the true positives and negatives selected to train the

binary computer vision classifier. The first row has pictures of John Legend from the BLM

dataset, the second row has true negatives selected also from the BLM dataset, and the

third row has true negatives selected from the Internet (pictures of Don Cheadle, Rihanna,

Leonardo DiCaprio, and Danny Glover).

Figure 8: Examples of Images used as true positives and true negatives to train a computer
vision binary classifier predicting pictures of John Legend
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5.5 Data for Computational Experiment (3): Predicting the Emo-

tions Images Evoke

We face two main challenges when selecting images to train computer vision algorithms

predicting emotional reactions. First, annotators reported that numerous images in our

BLM dataset did not trigger any emotional reaction (that is, they received a score of 0 on

every emotion). This means that for training purposes we can only use these images as

true negatives. Second, some images triggered more than one single emotion. These images

may add confusion during training and make it more difficult for computer vision algorithms

to isolate what specific image features are linked to each emotion. Figure 10a shows, for

example, that annotators reported that about 35% of the BLM images (2,876 out of 8,148)

did not evoke any emotion, while about 50% (3,746) of images evoked more than one emotion.

They reported 1,516 images that evoked only a single emotion. Figure 10b shows how often

annotators reported that an image evoked one of the given pairs of emotions. We can see for

example that images triggering anger often trigger sadness and disgust as well.

(a) Number of emotions triggered by the images
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Figure 9: Images in our dataset often trigger more than one emotion

We follow previous work on visual sentiment analysis in computer science (e.g. Peng et al.

2015) and choose images that “clearly" trigger each emotion as true positive cases to train
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emotion classifiers. We select pictures for which the 0-10 score for the strongest emotion

evoked in a picture is higher than 3 (the max class must have a value higher than 3). We

then further limited the sample to images where the difference between the highest scoring

emotion and the second highest scoring emotion score is equal to or greater than 3 (these are

images with a clear max class, with less overlap between emotions). We then choose “neutral"

images from the set of pictures that annotators reported as not evoking any emotion as true

negatives.

The advantage of this approach is that, compared to training with images that evoke

multiple emotions or to use images triggering other emotions as true negatives, it should be

easier for a computer vision algorithm to learn about image features that are predictive of

each emotion. The drawback is that we significantly reduce the size of the training set. Only

1,630 images fulfill the criteria and they are not equally distributed across the five emotion

categories. We end up with 103 true positives for anger, 127 for disgust, 862 for enthusiasm,

51 for fear, and 487 for sadness (see Figure 11). For each emotion we complement the training

set with the same number of neutral images (true negatives).

0
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1000

1500

anger disgust enthusiasm fear sadness

Emotion Max Class Clear Max

anger 935 103

disgust 648 127

enthusiasm 686 862

fear 484 51

sadness 889 487

Figure 11: Number of images that have each emotion as a max class (gray) versus “clear"
max class (3 point difference with the 2nd emotion score –in black–)

23



6 Method

We fine tune a pre-trained CNN seven times to create seven binary classifiers predicting:

images of protests (Experiment 1), images of John Legend (Experiment 2), and images trig-

gering anger, disgust, enthusiasm, fear, and sadness (Experiment 3). The pre-trained CNN

was trained on 1.3 million high-resolution images from the LSVRC-2010 ImageNet dataset

and was designed to predict 1,000 classes (Krizhevsky, Sutskever, and G. E. Hinton 2012).

This trained CNN is commonly known in the computer vision literature as AlexNet. The

network is composed of five convolutional layers, max-pooling layers, dropout layers, and

three fully connected layers at the end (see Figure 12). For each of our seven classifiers, we

remove the last fully-connected layer to predict 2 instead of 1,000 classes. We allow very

small updates of the weights in earlier layers and focus most of the learning in the last added

layer. We run 2,000 iterations (back and forward propagation) during the training of each

model.13 The weights of the new fully-connected layer are initialized using a Gaussian dis-

tribution with a standard deviation of 0.01 and we calculate the gradient using Stochastic

Gradient Descent and a learning rate of 0.001. All images are reshaped to have a size of

256x256x3 and we use a batch size of 50 during training.

Figure 12: AlexNet architecture

Table 1 summarizes the number of training and testing observations for each CNN we

train. Notice that in most cases we use only about a hundred true positives and a hundred true

negatives. As mentioned, this would be insufficient to train a CNN from scratch, especially
13Training loss does not improve much after 2,000 iterations (see Appendix I, Figure 17)
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in only 2,000 iterations, but this is when the potential for fine tuning an existing CNN comes

in very handy. Pre-trained deep neural nets have already learned some good generic features

such as edge detectors and color blob detectors. In all cases we use 80% of the true positives

and true negatives for training and 20% for testing. In the following section of the paper we

asses the extent to which we are able to predict the correct labels (positive/negative) in the

testing sets.

CNN-classifier Experiment N True Pos (train|test) True Neg (train|test)

Protest Exp. 1 200 100 (85|15) 100 (85|15)

Opinion Leader Exp. 2 200 100 (80|20) 100 (80|20)

Anger Exp. 3 206 103 (82|21) 103 (82|21)

Disgust Exp. 3 254 127 (102|25) 127 (102|25)

Enthusiasm Exp. 3 1,720 860 (690|172) 858 (687|171)

Fear Exp. 3 102 51 (41|10) 51 (41|10)

Sadness Exp. 3 972 487 (390|97) 485 (388|97)

Table 1: Description of the Computational Experiments in the paper

7 Results

After training the seven CNNs using the true positive and true negative observations in the

training sets, we use the models to predict the probability that images in the held-out test

set are images of protests/demonstrations (Exp. 1), John Legend (Exp. 2), and images that

evoke anger, disgust, enthusiasm, fear, and sadness (Exp. 3). The last layer of all the CNNs is

a SoftMax classifier that returns the probability that a given image belongs to each of the two

classes (positive/negative), with the sum of the probablities adding up to 1. We transform

the probability for the positive class into a dichotomous variable. Usually we use a 0.5

probability cut-off to build this dummy variable: if for example the “protest model" predicts

that there is a 0.51 probability that a given image contains a protest/demonstration, then
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we would classify that image as being about a protest. However, using a higher probability

threshold may sometimes increase model accuracy.

In the rest of this section we report the results of the seven models based on the predicted

labels for the testing sets. We judge the results using three common validation measures in

machine learning: recall, precision, and accuracy. Recall is the percentage of true positives in

the test set that the model predicted as positives. Precision is the percentage of cases that the

model predicted as positives that are actually true positives, and Accuracy is the percentage

of both predicted positives and negatives that are actual true positives and negatives.

7.1 Computational Experiment (1): Predicting Images of Protests

In this computational experiment we train the algorithm using 85% of the true positive and

negative cases (n = 170) and we then evaluate the model’s predictive accuracy by classifying

the 15% of the observations that we reserved for testing (n = 30). If we use a > 0.5 prob-

ability threshold to transform the SoftMax probability outcome into a protest dichotomous

variable, we observe from the confusion matrix in Table 2 that the model overestimates the

presence of protests in images. Most of the true positive cases are being predicted as positive

cases of protest images (93% recall), but a substantive number of true negatives (images with

no protest) are being incorrectly predicted as positives, resulting in a low model precision

(58%). However, by changing the probability threshold to > 0.6, we can retain the same re-

call and improve the precision to 74% (see Table 3). In a binary setting like this one, slightly

increasing the probability threshold makes sense because it means that we want to ignore

close positive predictions. In other words, we want to discard positive predictions based on

49/51% calls. However, researchers should keep in mind that a larger probability threshold

increase may improve predictive accuracy for a particular test-set but not others, leading to

overfitting. Figure 13 shows how changes in accuracy, precision, and recall shift depending

on which probability threshold is chosen.
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Gold Predicted Negative Predicted Positive Gold Total Recall

Negative 5 10 15

Positive 1 14 15 (93%)

Predicted Total 6 24 30

Precision (58%)

Table 2: Confusion matrix of predicted versus actual protest images, with > 0.5 Pr threshold

Gold Predicted Negative Predicted Positive Gold Total Recall

Negative 10 5 15

Positive 1 14 15 (93%)

Predicted Total 11 19 30

Precision (74%)

Table 3: Confusion matrix of predicted versus actual protest images, with > 0.6 Pr threshold
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Figure 13: Precision, Recall and Accuracy of a binary classifier predicting protest images as
we move the probability threshold used to transform SoftMax probabilities to a dichotomous
variable
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7.2 Computational Experiment (2): Predicting Images of John Leg-

end

The CNN predicting images of John Legend also produces very accurate results. Out of the

40 images that we do not use for training and leave out for testing (20 true positives and 20

true negatives), the model correctly predicts 36 (18 true negatives and 18 true positives) for

a precision, recall, and overall accuracy of 90% (see Table 4).

Gold Predicted Negative Predicted Positive Gold Total Recall

Negative 18 2 20

Positive 2 18 20 (90%)

Predicted Total 20 20 40

Precision (90%)

Table 4: Confusion matrix comparing predicted versus actual images of John Legend

Table 4 shows the images that were incorrectly predicted. The two pictures on the left

are false negatives: images that the model should have predicted as having John Legend

in them but did not. The two pictures on the right are false positives: images that should

have not been predicted as having John Legend. The two false negatives on the left were

probably caused by other extra features present in the picture, such as John Legend’s baby,

sunglasses, and hat, and the letters in the second picture. We are less certain about what

causes the two false positives. We suspect this may be related to the people in the image

having a very similar position to the position John Legend has in the training images. In

future iterations of the paper we will add an extra pre-processing step before training the

CNN: we will first use face detection methods to extract and only compare faces present in

images instead of the whole image (using for example a Viola-Jones algorithm). This is a

common step when training CNNs for face recognition. We thought this step was not nec-

essary in this case because the John Legend images present in our BLM dataset were very

neat. However, introducing a face detection step may help get the accuracy closer to 100%
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and will likely be necessary to detect notable individuals who are pictured in a crowd (such

as Dr. Cornel West).

Figure 14: False negatives (left) and false positives (right) predicted by the CNN trained
to predict images of John Legend

7.3 Computational Experiment (3): Predicting Emotions

Predicting the emotions images evoke is the most challenging task we undertake in this paper.

Predictive accuracy is not as high as in the first and second computational experiments.

Table 5 presents the results. Recall for all of the emotions except for fear is greater than 60%,

with the disgust recall reaching 80%. Precision is notably lower for all of the emotions. This

means that the binary classifiers have a tendency to overestimate the positive probabilities for

each emotion. The classifiers predict as positives images that are actually negative (neutral)

cases. As a result, predictive accuracy is around 60% for disgust, enthusiasm and sadness, and

50% (a random coin flip) for anger. The fear precision is 33% and recall is only 20%, which

means that the model is doing worse than a coin-flip because it is learning some misleading

features from the training set.
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Emotion Test Set (N) Pos (n) Neg (n) pPos (n) pNeg (n) Rec. Prec. Acc.

anger 42 21 21 32 10 0.76 0.50 0.50

disgust 50 25 25 32 18 0.80 0.62 0.66

enthusiasm 343 172 171 226 117 0.76 0.58 0.60

fear 20 10 10 6 14 0.20 0.33 0.40

sadness 194 97 97 103 91 0.61 0.57 0.58

Table 5: Results from emotions CNN

There are a couple points that may account for the somewhat weak visual sentiment

analysis results, especially for fear. First, note that the sample sizes are quite low, meaning

the algorithms do not have much to learn from. Second, it is important to notice how

different the images in our dataset are from images used for visual sentiment analysis in

current computer science studies. Figure 15 shows images labeled as sad images in the

Emotion6 dataset while Figure 16 shows images from our BLM data that annotators labeled

as evoking sadness. Computer vision scholars have been able to build relatively accurate

(60-70% accuracy) binary emotion classifiers (Peng et al. 2015, Wang et al. 2013), but the

images they have used so far have a very simple composition. They usually do not have

more than one or two elements in the picture. On the contrary, politically relevant images

that people share online are a lot more complex. For example, in our BLM dataset there are

images of cartoons, images with several elements, and images that combine visuals with text.

This means that larger training sets of politically-relevant images and more complex models

need to be build in order to improve accuracy in predicting emotions that political images

evoke: such as adding text, detected objects, and detected facial expressions as features.
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Figure 15: Sad images from the Emotion6 dataset

Figure 16: Sad images from our BLM dataset

8 Conclusion

The main takeaway from our paper is that computer vision methods using CNNs can produce

accurate results, even when applied to messy, real world images, and even with a relatively

small number of manually labeled images to work from. While there are adjustments that

we could undertake in order to improve the results even further, such as including a face

detection step in the second computational experiment, and including some other image-level

features to improve the accuracy of the visual sentiment classifier, these preliminary results

are encouraging. With samples of between 100 and 2,000 tweeted images from a Black Lives

Matter protest, we are able to (1) identify whether the picture was of a protest, and (2)

identify whether the picture contained the singer John Legend. We also show encouraging

preliminary results in predicting (3) whether the picture would evoke one of five emotions of

interest.

We hope these results will encourage political scientists who are asking important ques-

tions about images, whether they want to derive a separate measure of interest from the data

in images (e.g., the number of protesters) or if they want to study how images affect atti-

tudes and behaviors (e.g how images affect willingness to tweet about a social movement).
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Researchers with thousands or even millions of images should not be intimidated by the

prospect of having to label those images in order to get to theoretical questions of interest.

An investment in manually labeling a random subsample of those images, combined with

an investment in learning how to use CNNs, will unlock huge datasets of images. In our

project, we have gold standard labels for all of our 9,500 tweeted images. But what if we had

collected 200,000 total unique images? Instead of painstakingly labeling all of them by hand

with multiple annotators, we could use the algorithms trained on a sample of images, asking

the algorithm to automatically label the remaining images. The final data would allow us to

build analyses from a massive corpus of images.
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9 Appendix I
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Figure 17: Training Loss of seven Convolutional Neural Nets trained for 2,000 iterations
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