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Images play a crucial role in shaping and reflecting political life. 
Digitization has vastly increased the presence of such images in 
daily life, creating valuable new research opportunities for social 
scientists. We show how recent innovations in computer vision 
methods can substantially lower the costs of using images as 
data. We introduce readers to the deep learning algorithms 
commonly used for object recognition, facial recognition, 
and visual sentiment analysis. We then provide guidance and 
specific instructions for scholars interested in using these 
methods in their own research.
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Images as Data for Social Science Research 1

1 Introduction
Digital photography and the internet have contributed to an explosion in the
production and consumption of images in social and political life. According
to the Internet Live Stats website,1 on September 18, 2018, Instagram users
were uploading 869 images per second. That works out to 75,081,600 images
uploaded per day to just one of many social media platforms. Facebook, Twit-
ter, Snapchat, YouTube, and other sites also enable users to effortlessly share
their photos so easily snapped using camera-equipped smartphones as well as
computer-generated graphics or memes.
The study of images in social and political life is not new. For example,

prior research has established that images play key agenda-setting and framing
roles in newspaper coverage (Gitlin 1980; Corrigall-Brown and Wilkes 2012;
Brantner, Lobinger, and Irmgard 2011; Powell et al. 2015), that they can
influence people’s perceptions of political candidates and their votes (S. W.
Rosenberg et al. 1986; Todorov et al. 2005); and inspire (or discourage) polit-
ical participation (Raiford 2007; Casas and Webb Williams 2018; Kharroub
and Bas 2015). More generally, a large literature shows that visuals do a better
job than written and spoken content in capturing people’s attention (Dahmen
2012), facilitating information processing (Grabe and Bucy 2009; Messaris
and Abraham 2001), improving information recall (Nelson, Reed, and Walling
1976; Paivio, Rogers, and Smythe 1968), and evoking emotions (Iyer and
Oldmeadow 2006).
The abundance of images, however, is new. The presence of so much image

content presents both promises and challenges for social scientists. The poten-
tial benefits for social science of working with large quantities of digitized
images are myriad. Digitized images allow us to test existing theories in new
ways and also push us to develop new theories of how image can impact soci-
ety. Some scholars have already begun delving into using images-as-data, and
these studies can be roughly organized into two broad categories: images-
as-data in a causal framework and images-as-data for measurement.2 The
borders between these two categories of research using images-as-data are
fuzzy, but we nonetheless find the distinction helpful in organizing published
and ongoing work.
In a causal framework, images are either the independent or dependent vari-

able (or both). Some prior studies use images as outcome (dependent) variable.

1 www.internetlivestats.com/, last accessed April 26, 2020 (Internet Live Stats – Internet Usage
& Social Media Statistics 2020).

2 Yilang Pengmaintains a very helpful list of social science papers using computer visionmethods
at https://yilangpeng.com/computer-vision/, last accessed April 26, 2020 (Y. Peng 2020).
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2 Quantitative and Computational Methods for the Social Sciences

For example, Joo, Li, et al. (2014) show how the choice of visuals can be a
means of communicating the intent of politicians. Peng (2018) shows that news
outlets choose pictures of political candidates that match the ideological lean-
ings of the outlet. Similarly, Torres (2019) finds that ideological leanings of
news outlets are linked to their choices of images to represent stories about the
Black Lives Matter movement.
Other studies in the causal framework use images as explanatory (inde-

pendent) variables, examining how visual inputs relate to some attitudinal or
behavioral outcome of interest. For example, in Casas and Webb Williams
(2018), we find that images that evoke enthusiasm and fear result in higher
rates of online social movement attention and diffusion (measured by retweets)
in the context of a Black Lives Matter protest. In another example, Horiuchi,
Komatsu, and Nakaya (2012), using automated image analysis, find that the
size of candidate smiles in campaign imagery is positively associated with elec-
toral vote shares. Similarly, Joo, Steen, and Zhu (2015) find that candidates’
facial traits can predict both party identification and vote share.
Images may also serve as a tool for measurement. Studies in this vein use

images not as a treatment or outcome per se, but as a source of data providing
evidence for another concept of interest. For examples, pictures have been used
as evidence of potential electoral incidents (Mebane et al. 2017), and as evi-
dence of tampering in vote counts (Callen and Long 2015; Cantú 2019). Image
analysis can be used to detect meaningful corners in legislative districts as a
possible proxy measure for compactness (Kaufman, King, and Komisarchik
2019). Lam et al. (2019) use automated image analysis to show differences in
the rates of representation of women and men in news stories. Won, Steinert-
Threlkeld, and Joo (2017) track protests and estimate their rates of violence
using images shared on Twitter, while Steinert-Threlkeld and Joo (n.d.) extract
events from images. Similarly, Zhang and Pan (2019) use a combination of
images and text to track collective action events. Images can provide estimates
of crowd size (Sobolev et al. n.d.). Philipp, Müller-Crepon, and Cederman
(n.d.) develop a technique of image segmentation to extract data about road
quality from digitized historical maps. Anastasopoulos et al. (2016) analyze
images of politicians with constituents of different races in order to understand
congressional homestyles. And scholars of political economy and economic
development increasingly use nighttime satellite images as a proxy for devel-
opment (see, for example, Henderson, Storeygard, and Weil 2012; Jean et al.
2016), where a brighter footprint indicates a better-off town or village.
In both the causal and measurement approaches to large-n images-as-data

research, a significant challenge is how to accurately and efficiently extract
information about the content of an image. This process is variously referred to
as classifying, labeling, tagging, annotating or other, more task-specific terms
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Images as Data for Social Science Research 3

(e.g., image segmentation). The goal is to identify features of interest about
or in an image. For example, a researcher might wish to know which photos
include a specific object (a flag, perhaps) or a specific individual (perhaps a
politician or opposition leader). Or theymight want to label images for the reac-
tions or emotions they evoke in viewers. Until recently, scholars interested in
such information relied on human annotators, which can be expensive and slow.
Computer vision methods now enable any researcher with some programming
ability to label large quantities of images more efficiently.
In this Element, we provide code and example data in addition to the text

(see Section 2 for details). We use running examples from a corpus of images
related to the Black Lives Matter movement that were collected on Twitter for
the Casas and Webb Williams (2018) article. Section 5 contains a detailed dis-
cussion of the original study and the data. At a high level, our goal was to
determine which features of images were tied to higher rates of social move-
ment attention and diffusion. The challenge was labeling a large number of
images (around 9,500) on multiple dimensions to disentangle multiple theo-
retical mechanisms. Here we demonstrate how we could use deep learning to
develop classifiers that can automatically label images for multiple features of
interest, dramatically reducing manual annotation costs. In the next section we
discuss three general labeling tasks that are of particular interest to social sci-
entists and that are also relevant to our specific corpus of Black Lives Matter
images and our research goals in that project.

1.1 Three Applications of Computer Vision for Social Scientists
Most cutting-edge computer vision work today relies on Convolutional Neu-
ral Nets (abbreviated as CNNs or CovNets). A CNN is given images with
known labels to learn from (or train on), and then its accuracy is evaluated
on a set of held-out validation or test images (again with known labels). In
theory, artificial intelligence (AI) computer vision algorithms, either CNNs or
other frameworks, can be trained to predict any attribute of an image. This
naturally has many potential applications for social science: we could predict
how large a crowd is from an image, for example, or guess whether or not
the image has been altered. In practice, some labeling tasks are much eas-
ier than others. The first two tasks described below, object recognition and
facial recognition, can usually (but not always) be accomplished with high
accuracy given sufficient and representative training data. The third general
task, visual sentiment analysis, is more difficult for reasons that help to illus-
trate some current limitations of computer vision methods as well as future
opportunities.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108860741
Downloaded from https://www.cambridge.org/core. IP address: 83.52.229.106, on 21 Jul 2020 at 07:49:22, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108860741
https://www.cambridge.org/core


4 Quantitative and Computational Methods for the Social Sciences

1.1.1 Object Recognition and Variants

One of the earliest challenges of computer vision research was to successfully
distinguish between images of two objects: cats and dogs (e.g., Golle 2008).
This type of computer vision task is referred to as object recognition. CNNs can
now accurately label a wide range of objects, including distinguishing among
breeds of cats and dogs and even fish species. The object being recognized does
not have to be a solo autonomous entity, however. In our Black Lives Matter
study, for example, we wanted to automatically identify (or recognize) whether
or not an image was of a street protest. This type of broader object recognition
is occasionally referred to as “scene” recognition.
A CNN trained to recognize or classify objects can be either binary (is this

an image of a flag or not?) or multiclass (is this an image of a flag, or a cat, or
a protest?). Figure 1.1 provides several multiclass image labeling results along
with their probabilities from one of the very first successful implementations
of a CNN for object recognition (Krizhevsky, Sutskever, and Hinton 2012).
A variant of object recognition is object detection. In object detection, the

goal is to label the different objects in an image rather than assign a single label
to the whole image. Does the image have a cat in it? A dog? A person? Object
recognition tasks ask, “What is this a picture of?” while object detection tasks
ask, “What things are in this picture?”
A CNN trained to detect objects will also generally provide a bounding box

indicating where in the image each object is located. Object segmentation,
another common and related image analysis task, is similar to object detec-
tion but is more precise – instead of generating a bounding box, segmentation
should extract the exact outlines of the object (the object “mask”). Figure 1.2
provides a visual for the differences between object classification/recognition,

Figure 1.1 Object Recognition using a CNN trained with ImageNet data
(from Krizhevsky, Sutskever, and Hinton 2012)
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Images as Data for Social Science Research 5

Figure 1.2 The differences between object recognition, detection, and
segmentation

Source: Stanford cs231 course, reproduced with permission from Justin Johnson.

localization (a bounding box for a single object), object detection, and segmen-
tation (of either the instance/objects in the image or semantic where each pixel
is assigned a meaning).
The prediction of a bounding box or image mask provides additional infor-

mation that may be of use for social scientists. For example, for a CNN trained
to recognize people, we might want to use the bounding boxes to count the
number of people present in an image. Or we might be able to discern the loca-
tion of a particular object type (a flag, for example) across various images. Is
the flag consistently in the middle of the image or is it always off to the right?
For more on object detection/segmentation research and recent advances with
CNNs, see Girshick (2015), Girshick et al. (2013), He, Gkioxari, et al. (2017),
and Ren et al. (2015). CNNs are not the only framework for object recogni-
tion and variants. For example, a different approach by Redmon, Divvala, et
al. (2016) has recently gained popularity for object detection.
In this book, we demonstrate an application of object recognition using the

Black Lives Matter image corpus. Our aim is to develop a binary classifier that
can automatically and accurately predict whether or not a given picture is of a
protest. Depending on the particular theories that a researcher wishes to test,
object recognition along these lines could be very valuable. A researcher could
automatically label images for the presence or absence of police, for example,
or for “I Voted” stickers.

1.1.2 Facial Recognition, Analysis, and Detection

Another class of automated image analysis focuses on faces in images. Facial
recognition algorithms are trained to answer the question, “Who is this?” Face
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6 Quantitative and Computational Methods for the Social Sciences

Figure 1.3 Li et al.’s 2015 Face Detection algorithm (from Li et al. 2015)

detection, like object detection, picks out where faces are within an image (see
Figure 1.3). This is a growing area of research where new methods are proving
very accurate (Anastasopoulos et al. 2016; Li et al. 2015; Zhu and Ramanan
2012). Facial analysis algorithms predict general features of faces in images
such as gender, age, race, or expressed emotion.
One application of facial recognition and facial detection is to identify

specific individuals in images. In social science research, one use of facial
recognition could be to identify and analyze politicians or other celebrity fig-
ures in images. When two politicians from the same party are photographed,
are they more likely to smile at one another? Do their facial expressions predict
party rifts? Tracking celebrities or politicians is one area where existing image
repositories can be very helpful for training classifiers. An example is Guo
et al.’s (Guo et al. 2016) compilation of celebrities. It can also be relatively
easy to collect what are in effect prelabeled images of celebrities by search-
ing for images of specific individuals online. In this Element we demonstrate
a binary facial recognition classifier using images labeled for whether or not
they include the singer John Legend (who appeared often in our Black Lives
Matter images). John Legend could shape support for the Black Lives Matter
movement because he is a popular celebrity and potential opinion leader. To
measure the effect of his pictures on support, we need to know which pictures
include his face.
Moving away from the Black Lives Matter example, we also demonstrate

a multiclass facial recognition example that can distinguish between images
of world leaders. This has potential applications for international relations
and comparative politics scholars. If we can quickly identify public leaders
in images, especially leaders who might not be included in standard celebrity
taggers, we could potentially use that information to, for example, predict
changes in trade agreements or breakdowns in ceasefires. If leaders are pic-
tured glowering at one another, that may not bode well for peaceful, productive
relations.
In our examples, the images of John Legend and world leaders are all close-

ups of faceswithoutmuch else in the picture. To detect the presence of a specific
celebrity or world leader in a more complicated image, such as a crowd of
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Images as Data for Social Science Research 7

people, a researcher would first detect (or segment) the different faces in the
image before applying a facial recognition algorithm to each of the parsed faces.
For a recent study that follows this general strategy of face detection and then
analysis, see Lam et al. (2019).

1.1.3 Visual Sentiment Analysis and Affect

There are at least two distinct ways to think about emotions and images. The
first type of emotional content is the emotion being expressed by people in an
image. For example, is the individual in the image happy, sad, confused, and
so on? Predicting the emotion on a face falls into the category of facial analysis
described earlier. The second type of emotional content is the emotion that an
image evokes in the viewer of the image. Does the image make the viewer feel
happy, sad, confused, and so on?
Both of these very different objectives are sometimes called visual senti-

ment analysis (VSA), although some scholars refer to the latter objective as
predicting affect. These are very different labeling tasks and are generally more
challenging than object detection or facial recognition, in part because emotions
are subjective. Accurately predicting expressed emotions is the easier of the two
sentiment tasks, but even so the task is not as easy as saying whether or not a
picture has a puppy in it. Evoked emotions, the focus of our VSA examples,
are even more subjective. Images can evoke very different responses in differ-
ent people because of how the viewer filters the information contained in the
image. A photo of Donald Trumpwill evoke very different emotions depending
on one’s party affiliation, for example.
CNNs now do a moderately good job of predicting evoked emotions for a

variety of images (60–70% accuracy) (Peng et al. 2015; You et al. 2015). How-
ever, existing analyses are typically based on very clean images of limited scope
(see Figure 1.4 for examples). In addition, as with any automated classification
task, the results are only as good or as relevant as the training data. Whether an

Figure 1.4 Visual Sentiment Analysis using CNN (from Peng et al. 2015)
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8 Quantitative and Computational Methods for the Social Sciences

algorithm trained to predict evoked emotions on one set of images (such as Cor-
nell’s Emotion6 from Peng et al. 2015) will do a good job of predicting evoked
emotions in other contexts is an open (and very interesting) question. Neverthe-
less, we view this as one of the most intriguing applications of computer vision
methods for social science. Emotions may be a central factor explaining why
people are attracted to images, and in turn why images appear to be such pow-
erful forms of communication. One of the questions we asked in the motivating
Black Lives Matter study, for example, was whether tweets that evoked emo-
tions such as enthusiasm, disgust, or fear are more likely to be shared (Casas
and Webb Williams 2018). In this Element, we test if we can accurately pre-
dict human-generated evoked emotions labels using a CNN. While we do not
achieve highly accurate results, we still present them here as a demonstration of
the challenges, promise, and potential limitations of automated image analysis.

1.2 Other Computer Vision Tasks
The above are just three examples of computer vision tasks that are relevant for
social scientists. Computer vision is a very large field. New applications, from
automated image captioning to generating fake images, appear in academic
journals and the popular press on a regular basis. For example, the aim of optical
character recognition (OCR) is to extract text from images (e.g., Kulkarni et al.
2013). This is particularly valuable for studying digitized images in that people
increasingly embed text in images (such asmemes or screenshots of text used to
circumvent Twitter’s character limit). Commercial image autotagging services
such as Amazon’s Rekognition (described in more detail below) often offer text
recognition options. An open-source Python option is Tesseract3 (Smith 2007).
Extracting handwriting, as opposed to printed text, is also potentially relevant
to social scientists.
Video analysis is another relevant computer vision task for social scientists

– each frame of a video can be treated as an image for analysis. Automat-
ically analyzing video data has useful implications for many social science
applications. In political science, researchers have begun using computer
vision techniques to evaluate facial expressions and body language during
debates (Joo, Bucy, and Seidel 2019), process campaign ads (Hwang, Imai,
and Tarr 2019), and estimate party polarization (Dietrich 2019).
Dimensionality reduction is another arm of computer vision research of

use to social scientists. These techniques take different approaches to reduc-
ing complicated pixel interactions into a lower dimensional space. The lower

3 https://github.com/tesseract-ocr/tesseract, last accessed April 26, 2020 (Tesseract documenta-
tion | Tesseract OCR 2020).
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Images as Data for Social Science Research 9

dimensional representation can then be used for automated image clustering
and other methods (see, for example, Casas, Webb Williams, et al. [2019]).
A full description of these techniques is beyond the scope of this Element,
however.
Although we do not explicitly demonstrate the full possible range of com-

puter vision tasks and social science applications in this Element, the CNN
logic and processes we do discuss provide an introduction to the field that will
be relevant for further reading on automated image analysis and images-as-data
(though we hasten to emphasize that not all applications are based on CNNs).

1.3 Overview of the Element
This Element is a practical introduction to computer vision methods for image
classification using CNNs, including object recognition, face recognition, and
visual sentiment analysis. It is written for social scientists who have some expe-
rience with programming languages such as R or Python. We wish to again
stress that computer vision is a large and growing field, and that there are rel-
evant tools for social science beyond CNNs and image classification. There
are many available books, guides, courses, and free online materials that cover
various aspects of computer vision. Most of these are geared toward computer
science audiences, so this Element is intended to bring social scientists up to
speed on the basics. We hope that this introduction will serve as a springboard
for social scientists interested in using computer vision methods in their own
images-as-data work.
One extremely helpful advance in image classification is the existence of

huge, labeled repositories of images. These repositories are not without contro-
versy, particularly surrounding the sources of the images and possible privacy
violations (see Metz 2019 and Section 8 for more). Some previous benchmark
datasets may no longer be available because of these concerns. Competitions to
build the most accurate classifiers for standard image repositories have resulted
in a plethora of trained supervised learning algorithms that can accurately pre-
dict the known labels. Many of these trained CNNs are open source. As a
result, other researchers can now borrow trained CNNs available commercially
or in open-source libraries. As we demonstrate, it is also relatively easy for
researchers to adapt these existing algorithms to new purposes (i.e., to assign
a different set of labels than those that are in the original benchmark image
repository).Whereas the original algorithmmay have been the product of many
months of effort using millions of labeled examples, this fine-tuning or transfer
learning can produce remarkably accurate results using amuch smaller training
set of images (as few as 100 in some cases).
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CNNs are a specialized type of deep learning algorithm. They take as raw
data the values of each pixel in a digitized image, generally either red, green,
and blue (RGB) values or grayscale. They use lots of prelabeled training images
to “learn” which pixel combinations are associated with the desired labels. An
algorithm’s accuracy is assessed by applying it to prelabeled validation or test
images that are not included in the training set. Once performance is satisfac-
tory, the algorithm can then be used to label large numbers of additional images
quickly and at very low cost.
In this Element we do not focus on the process of training a CNN classifier

from scratch (although we do discuss how artificial and convolutional neu-
ral networks work), as this usually requires a very large number of manually
labeled images and lots of computational power. A social science researcher
looking to label images using what might be considered “conventional” labels
(e.g., whether the picture contains basic objects like cats, dogs, cars, or motor-
cycles) does not need to know how to build their own new classifier. They
can simply use one of many available off-the-shelf trained algorithms (either
commercial or open source) that are optimized for these labels. We provide a
brief introduction to one commercial service (Amazon’s Rekognition) as one
of these “autotagger” options. However, rarely are social scientists interested
in these conventional labels. Hence, our primary focus is on fine-tuning, where
the objective is to adapt or “fine-tune” an existing algorithm to assign a spe-
cific set of labels developed by a researcher. With these tools, new subfields of
social science are in the making.
The remainder of this Element proceeds as follows. In Section 2 we

first discuss some technical requirements for the methods described in this
Element. While computer vision methods have become increasingly acces-
sible, there are some prerequisites to using the techniques we describe. In
Section 3, we provide an introduction to the basics of deep learning and
CNNs. Section 4 describes the main method we advance in this book, fine-
tuning a CNN, with subsections on image preprocessing, hyperparameters, and
diagnostics.
Turning from theory to application, Section 5 introduces the data (images)

used in our examples. As part of an earlier project, we collected and labeled
9,500 unique images shared on Twitter by people tweeting about a Black Lives
Matter (BLM) protest. We then labeled the images for select content and for the
emotions they evoked in viewers. The example applications evaluate the degree
to which we can successfully predict the manual labels using automated means.
One way to leverage the deep learning revolution for image analysis is to

use off-the-shelf autotaggers, many of which are based on CNNs. In Section
6 we use some of the BLM images to demonstrate both the promise and the
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limits of autotaggers. We provide example code to use one of many available
commercial autotagging services: Amazon’s Rekognition.
Given the many limitations of autotaggers, many social scientists will likely

decide that fine-tuning an existing classifier is the best option for their classifi-
cation tasks. Section 7 explains the technical details of fine-tuning, along with
a series of binary examples and a multiclass example. Working with the BLM
data, we demonstrate how to fine-tune a CNN to predict the presence of protest,
the presence of John Legend, and whether or not an image evokes one of five
emotions. We then draw on a separate toy dataset to demonstrate a multiclass
model predicting images of six world leaders.
In Section 8 we raise but do not fully answer some thorny legal and ethi-

cal questions related to training computer vision algorithms and using images
obtained from sources such as social media in research. While we have few
definitive answers to these questions, we do suggest resources and advise our
fellow scholars to incorporate discussions of ethics into every part of their
research pipelines, including data collection, analysis, and publication.

2 Prerequisites for Computer Vision Methods and Tutorials
This Element includes interactive, well-commented tutorials and example code
designed to make the process of using CNNs for image labeling more com-
prehensible and accessible. Most of our visualizations and tables are written
in R (primarily drawing on the tidyverse package from Wickham [2017]),
while most of the computer vision scripts are written in Python. Python 3.5
and higher have well-supported computer vision packages. Users of Python
2.7 may find that needed packages (dependencies) are not available. Python
also offers additional benefits for computer vision research. Services such as
Amazon’s Mechanical Turk can be accessed using Python, making it possible
to automate the processes of recruiting and paying image annotators for gold-
standard labels. Automatic image tagger APIs (application program interfaces)
from Amazon, Google, and Microsoft are also accessible via Python.
Readers can replicate and modify our analyses by using the companion Code

Ocean capsule,4 which includes sample images. CodeOcean is a site for hosting
code, data, and computing environments and is primarily designed for repli-
cation purposes. A benefit of Code Ocean is that users can run code on the
platform for free. Since each capsule provides information about the comput-
ing requirements for the project (e.g., which versions of packages to use, any
required hardware), this removes one of the major hurdles for replication. For

4 https://doi.org/10.24433/CO.2462313.v1, last accessed April 26, 2020 (Webb Williams, Casas,
and Wilkerson 2020).
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advanced users, note that the Code Ocean capsule contains an environment
directory with a Docker file. However, Code Ocean users are subject to com-
puting quotas. To get started on Code Ocean, create an account (using a .edu
email address will give you a higher computing quota) and then navigate to
the accompanying Code Ocean capsule.5 To run or edit the code, create a pri-
vate copy of the capsule (there are many options to do this, from clicking on
“Edit Capsule” or “Re-Run” to selecting “Duplicate” from the “Capsule” drop-
down menu). Once you have a private copy, you can start a cloud computing
session by clicking on “Launch Cloud Workstation” – for our project, we rec-
ommend using the Jupyter option. Once the cloud machine launches, you can
edit and rerun the code in a Jupyter Notebook (see the official Jupyter site6 for
an introduction to Jupyter Notebooks).
While Code Ocean is an excellent resource for replication and slight modifi-

cations, due to computing quotas it may not be the best framework for extensive
edits or for implementing the demonstratedmethods on a different set of images
for a different classification scheme. For these reasons, scholars may wish
to edit and run the code elsewhere. Code Ocean gives users the option to
“Export” the capsule for other uses. We also make the replication files avail-
able in a Github repository7 for those more familiar with that platform (Github
is primarily for storing and sharing code).
Training CNNs can require substantial computing power. Graphics process-

ing units (GPUs) increase efficiency. When readers run the provided scripts
using Code Ocean, their cloud computing sessions will run on a GPU-equipped
machine. However, researchers who would like to adapt these scripts for other
purposes will likely need their own high-performance machines, access to
high-performing computer clusters through their institutions, or access to a
commercial cloud computing instance.
The code provided in this Element was initially run on the Amazon Web

Services (AWS) cloud computing platform known as EC2, and some of our
accompanying tutorials are built for this service, but there are other commer-
cial cloud computing platforms available (e.g., Microsoft’s Azure and Google
Cloud). An EC2 instance is essentially a remote computer that researchers
can access over the Internet and use to run code. Renting an EC2 instance
can cost anywhere from $0.0052 to $24.48 per hour, depending on the type

5 https://doi.org/10.24433/CO.2462313.v1, last accessed April 26, 2020 (Webb Williams, Casas,
and Wilkerson 2020).

6 https://jupyter.org/, last accessed April 26, 2020 (Project Jupyter | Home 2020).
7 https://github.com/norawebbwilliams/images_as_data, last accessed April 26, 2020 (Webb
Williams and Casas 2020).
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of machine.8 EC2 instances do not have keyboards or monitors – to interact
with them requires some comfort using the command line (or bash terminal).
One advantage of replicating our AWS infrastructure for your own applica-
tions is that the setup will have the correct hardware and package versions for
the scripts accompanying this Element. Detailed instructions for setting up such
an AWS instance are provided in a guide on the accompanying Github.9

Supervised learning algorithms such as CNNs require labeled images for
training and validation purposes. In this Element we devote little attention to
methods for obtaining images (such as how to use social media APIs; see,
for example, Steinert-Threlkeld [2018]), for creating annotated training sets,
and for data collection and storage. Procedures and performance metrics for
qualitative coding are well developed (see Saldaña [2009]), and researchers
have several options for generating original labels. Undergraduate and gradu-
ate students have long been a staple of such work. Services such as LabelBox
and Atlas.ti offer infrastructure for efficiently managing labeling projects.
Crowdsourcing services, such as Amazon’s Mechanical Turk or Figure Eight
(formerly Crowdflower), are used widely in computer vision label generation
(and text-as-data work – see Benoit et al. [2016] for an excellent application
and discussion of the strengths and limitations of crowdsourcing services).
Researchers also have the option of using benchmark image datasets that

typically include lots of images with well-validated labels. A careful Internet
search for potential training data may end up saving a lot of time. However, the
images and labels in these datasets may be of limited value if they are not rep-
resentative of the images or labels of interest. An example that we will return
to is images of protests. If existing image repositories do not include images
labeled as protests, it will be impossible for a CNN trained on that data to rec-
ognize protests. But even repositories that do include labeled protest images
may not suffice. Images of Arab Spring protests, for example, may or may not
be good training data for a project that seeks to identify Tea Party protests.
Data storage can become an issue in computer vision research because digi-

tized image files can be quite large. Cloud storage services (such as Amazon’s
S3, Google Drive, Dropbox, or academic institution-specific services) now pro-
vide virtually unlimited storage (at a cost). Commercial services are usually
also accessible by API. For larger, long-term projects (involving terabytes of
data), it may be more cost effective to purchase physical hard drives.

8 For latest pricing, see https://aws.amazon.com/ec2/pricing/on-demand/, last accessed April 26,
2020.

9 https://github.com/norawebbwilliams/images_as_data/blob/master/notes/01-launch-use-ec2-
aws-instances.md, last accessed April 26, 2020 (Webb Williams and Casas 2020).
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Finally, we urge readers to constantly consider the privacy and ethics impli-
cations of their image data collection, labeling, and sharing practices. Are we
paying workers fairly? Are we causing harm by asking students or crowdsourc-
ing workers to label potentially offensive or graphic images? Do our strategies
for storing and sharing data respect individual privacy?We discuss these issues
in more depth in Section 8.
In the Section 3, we look “under the hood” of deep learning algorithms.

Before fine-tuning a CNN, we need some understanding of how they work.
What is a deep learning Artificial Neural Network (ANN)? And why does most
computer vision research rely on CNNs?

3 Introduction to CNNs for Social Scientists
As the applications described earlier demonstrate, the field of computer vision
has grown by leaps and bounds in the last decade. Today most, but not all,
computer vision research is based on CNNs (or ConvNets), a type of “deep
learning” neural network that works well with images as inputs. Convolutional
nets can also be used for other data types, including text (Britz 2015). In this
section we describe the basics of deep learning (beginning with ANNs), CNNs,
and CNNs for image analysis. For additional information about these subjects,
we highly recommend Buduma and Locascio (2017)’s book and the materials
accompanying Stanford University’s CS231n course.10

ANNs are statistical models that use what are called intermediate abstract
representations (or hidden layers) of the input data (any data matrix, known
as the input layer) to learn from new features in those hidden layers and better
predict outcomes. The intermediate representations result from applying a large
number of complex interactions and nonlinear transformations to the initial
input matrix. “Deep learning” refers to the presence of multiple hidden layers.
As a toy example to demonstrate an ANN, suppose that we wanted to predict

the vote share for Hillary Clinton during the 2016 Democratic primaries as a
function of some county-level features, using the data from seven California
counties displayed in Table 3.1 (data source: 2016 U.S. Election Kaggle com-
petition, Hamner [2019]). We would start with a 7�4 input matrix X containing
information about the percentage of the county population that is white (x1), the
percentage of the county population with at least a college education (x2), the
median income per capita (x3), as well as an intercept column (x0). The goal
would be to use this information to predict Clinton’s vote share, contained in
a 7 � 1 output matrix Y. In conventional machine learning, we could estimate

10 http://cs231n.stanford.edu/, last accessed April 26, 2020 (CS231n Convolutional Neural Net-
works for Visual Recognition 2020).
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Table 3.1 Vote share for Hillary Clinton in the 2016 Democratic primaries
in seven California counties.

White College Median Income (per capita, Vote
County (%) (%) in hundreds USD) Share

Lake 87.70 16.20 215.37 0.46
Shasta 88.50 18.80 236.70 0.48
Mendocino 86.30 22.00 233.06 0.36
Sonoma 87.40 32.20 328.35 0.51
Sutter 74.00 18.70 236.02 0.55
Amador 90.70 19.30 273.47 0.52
Napa 84.80 31.30 347.95 0.60

X

x0 x1 x2 x3
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(1)

Figure 3.1 A linear model predicting Clinton’s vote share in the 2016
Democratic primaries in seven California counties ( OY), as a function of the
percentage of white population (x1), people with college education (x2), and

the median income per capita (x3).

(for example) a simple linear model (Y D Xˇ) by finding the 4 � 1 coefficient
matrix ˇ that minimizes predictive error (the difference between actual Ys and
predicted OYs). Figure 3.1 presents this linear model in matrix format. Impor-
tantly, only one parameter is associated with each input variable. For example,
in Figure 3.1 the blue coefficient (ˇ12 D �0:0066) describes the best asso-
ciation between the percentage of whites in a county (x1) and the results: all
else being equal, the model predicts that Clinton’s vote share will be 0.0066
percentage point lower when the percentage of whites increases by 1 point.
If we are more interested in accurately predicting the results of the Demo-

cratic primaries than in interpreting or understanding the specific effects of
race, education, and wealth, we might want to to use a “deep learning” artifi-
cial neural network to improve accuracy. Studies demonstrate that neural nets
can achieve higher predictive accuracy for a wide range of tasks (LeCun, Ben-
gio, and Hinton 2015). The main difference between conventional machine
learning algorithms and artificial neural networks is that there is more than one
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parameter associated with each input variable. The initial input variables are
transformed into new abstract representations, and coefficients are estimated
for these intermediate representations as well as for the original inputs. These
intermediate representations result from multiple interactions and nonlinear
transformations. Importantly, unlike in the initial example, the coefficients
from deep learning models are rarely interpretable in the sense that social sci-
entists are used to. The hidden layers tend to be black boxes (though making
these models more interpretable by humans is a growing computer science
field).
Basic matrix multiplication (or a dot product) is one of the keys to under-

standing artificial neural networks. In particular, in order to be able to multiply
two matrices, (a) the number of rows in the first matrix needs to be the same as
the number of columns in the second one, and (b) the resulting matrix will have
the same number of rows as the first matrix and the same number of columns
as the second matrix. The dot products between data matrices and parameter
(coefficient or weight) matrices are what facilitate transforming original inputs
into new abstract representations (or “hidden layers”). The hidden layers rep-
resent the information in the input layer in a new way, offering new learning
opportunities that can improve predictive accuracy.
Figure 3.2 uses the running example from Figure 3.1 to illustrate an artificial

neural network. In Figure 3.2(1) we transform the original 7 � 4 input layer X
into a 7� 2 hidden layer Z0 by multiplying the input by a 4� 2 weights matrix
ˇ1 (the red entries highlight these matrix multiplication steps). This dot product
allows for multiple varied interactions of the input variables, and the weights
matrix ˇ1 estimates the effect of these multiple interactions. Then it is com-
mon practice to apply a nonlinear transformation to this new hidden layer. Such
transformations are well known to improve model fit and predictive power by
accounting for nonlinear relationships between input and output (Gelman and
Hill [2007], Ch. 4). In Figure 3.2(2) we apply a ReLu (Rectified Linear Unit,
where negative values are replaced by 0s) to the hidden layer Z0, creating a
new version of the same layer: Z1. Several nonlinear transformations (known
as activation functions) are commonly used in deep learning models. Figure
3.3 illustrates the properties of three common activation functions by trans-
forming a set of original values between �5 and 5. Each method has its pros
and cons,11 but Krizhevsky, Sutskever, and Hinton (2012) find that applying
ReLu (rather than sigmoid or tanh) transformations to hidden layers accelerates

11 See these notes for more details: http://cs231n.github.io/neural-networks-1/#actfun, last
accessed April 26, 2020 via CS231n Convolutional Neural Networks for Visual Recognition
(2020).
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(Input Layer: 7×4)
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Figure 3.2 An artificial neural network predicting Clinton’s vote share in the
2016 Democratic primaries in seven California counties ( OY) as a function of
percentage of white population (x1), people with college education (x2), the
median income per capita (x3), and an intermediate representation of both

(Z1): (1) using the input layer X to create a new hidden layer Z0, (2) applying
a nonlinear ReLu transformation to the hidden layer Z0, (3) using the features
in the hidden layer to generate a set of predictions ( OY0), and (4) applying a
sigmoid transformation to these predictions to improve model fit ( OY1).

model convergence. Sigmoid and tanh activations can, however, be useful in a
final layer, depending on the outcome to be predicted: note in Figure 3.3 that
they generate values bounded between 0 and 1, and �1 and 1, respectively.
Then, after adding an intercept column (known as bias) to the newmatrix Z1,

we multiply the 7� 3 hidden layer by a new 3� 1 coefficient (weights) matrix
ˇ2 to produce a final 7 � 1 output layer of model predictions OY0. Finally, we
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Figure 3.3 Three common nonlinear transformations (activation functions)
in deep learning.

take advantage of one final nonlinear transformation to improve model fit and
predictive power. Rather than using a ReLu, we apply a sigmoid transformation
(a special case of the logistic function) to the output layer, which works well
for predicting proportions (values bounded between 0 and 1). This last step
generates a final set of predictions OY1.
Now that we have set the ANN architecture (the number and size of the

hidden layers, our choices of activation functions, etc.), the next challenge is
to determine what the values of the parameters in each layer should be in order
to maximize predictive accuracy (or, in other words, to minimize predictive
error). Theweights inˇ1 andˇ2 are first initializedwith random values and then
learned via Stochastic Gradient Descent (SGD), or variants thereof, and the
chain rule is used to derive the gradient. The model is estimated multiple times
(epochs), each time calculating all of the dot products to generate a new set of
predictions (forward propagation), then calculating the gradient and updating
the weight parameters (backward propagation) based on the model loss (the
difference between Y and OY1), until the loss of subsequent epochs reaches a
point of convergence. The values in Figure 3.2 show the values learned after
1,000,000 epochs of the model.
An artificial neural network has as many layers as the number of hidden

layers plus the last outcome layer. Thus the previous example (Figure 3.2) is
a two-layer-deep network because it has one hidden layer Z plus the outcome
layer Y. The ReLu transformation is not counted as a layer because there are
no weights to estimate (the same is true for pooling layers, described later).
The two layers in the example are also fully connected because we apply the
dot product to all units of a given layer (e.g., each data row in the input layer
X) and each unit of the following layer (e.g., each parameter in the parameter
matrix ˇ1). For additional information about ANNs, see LeCun, Bengio, and
Hinton (2015) and Schmidhuber (2015).
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3.1 Convolutional Neural Networks
Convolutional neural networks are a type of artificial neural network often
used in computer vision research. Their distinguishing characteristic is that,
in at least some of the hidden layers, the weights are not fully connected to the
whole output of the previous layer. Instead, a weights matrix called a filter is
connected to only one region of the input at a time. These filters learn features of
an image, such as the presence of a line segment or shape. The great advantage
of these convolutional layers, compared to fully connected layers, is that they
are much easier (and faster) to compute. This becomes particularly important
in computer vision because the input matrices for images (three dimensions of
pixel information) can be very large.
Figures 3.4(1) and 3.4(2) are similar to 3.2(1) and 3.2(2): an input layer X is

transformed into a new hidden layer Z0, to which we then apply a ReLu nonlin-
earity (generating Z1). In 3.4(3) we add a convolutional layer. That is, instead
of applying the dot product to the entire hidden layer Z1 and a new weights
matrix, we slide the filter ˇ2 along Z1 horizontally and vertically, multiply-
ing the aligned input and weight indices and recording (in K) the sum of the
outputs. Figure 3.4(3) highlights in blue the input units involved in the first
convolution (0 and 10.0404) as well as the resulting output (.0 � �0:5090/ C

.10:0404�0:186/ D 18:729). The next convolution would shift the filter hori-
zontally (.10:0404� �0:5090/ C .61:5057� 0:186/ D 6:3629), and vertically
(.0� �0:5090/ C .11:3235� 0:186/ D 2:1122), and so on. The notions of for-
ward and backward propagation remain the same. Figure 3.4 shows the weights
learned after 1,000,000 epochs of the model.

3.2 Convolutional Neural Networks for Image Classification
Where images differ from the previous example is in the input layer. Instead of
having a matrix of information about counties in California, we have infor-
mation about pixel intensities. Figure 3.5 illustrates how an image can be
represented as a three-dimensional matrix. The relevant features of images
are the colors and intensities of their pixels. The three-dimensional matrices
(or volumes) correspond to image width and height (in pixels) and color (red,
green, and blue [RGB] intensity channels). A typical image could therefore be
transformed into a 224 � 224 � 3 input volume X, where, for example, X1;1;1

contains information about the red intensity of the pixel in the top-left cor-
ner of the image and X1;1;2 and X1;1;3 contain information about the green and
blue intensities of the same pixel, respectively. Each pixel representation Xi;j;z

is usually a standardized integer ranging from 0 to 255, where higher values
indicate stronger intensity of a given color.
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(Input Layer: 7× 4)
X
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Figure 3.4 Convolutional neural network predicting Clinton’s vote share ( OY):
(1) using input layer X to create a new hidden layer (Z0), (2) applying a ReLu
transformation to Z0, (3) using a 1 � 2 convolutional filter to create a new
hidden layer K, (4) using K to generate a set of predictions ( OY0), and (5)

applying a sigmoid transformation to improve model fit.

Pixel-level information about color intensity is the primary input data used
to predict all types of image labels or classifications (the output Y). For exam-
ple, our dataset could include 50 images of protesting crowds, such as the
one in Figure 3.5, and 50 images of other things (e.g., pictures of cats, self-
ies, soldiers). We could split these 100 true positive and true negative images
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Figure 3.5 An image represented as a three-dimensional input. Each Xi;j;z
unit contains information about the pixel-level intensity of red, green, and

blue in the image.

into a train and a validation set, then use the three-dimensional matrix rep-
resentations of the images as input volumes (X), and train an artificial neural
network to predict which ones include protesting crowds ( OY). However, given
the three-dimensional nature of the images (each image has over 150,000 fea-
tures ranging from 0 to 255), an artificial neural network with fully connected
layers would take a long time to train, especially one that included several
hidden layers.
For this reason, state-of-the-art computer vision algorithms use CNNs

instead of fully connected ANNs. Figure 3.6 illustrates how the first convo-
lutional layer of a CNN for image modeling works. On the left side is an image
X expressed as a three-dimensional input volume (three matrices of pixel-level
red intensities [bottom], green [middle], and blue [top]). This example input
volume is of size 5 � 5 � 3, meaning that the example image is 5 pixels wide
and 5 pixels tall (instead of a more standard 224 � 224 pixel size). For this
example, we also limit the range of color intensities from 0 to 2 (instead of
the usual 0 to 255). The convolutional layer is composed of two 2 � 2 � 3
(ˇ1 and ˇ2) filters that we convolve (slide) over the input volume, creating a
new 4 � 4 � 2 output volume Z. The first (top) dimension of the first filter ˇ1

is connected only to the first (blue) channel of the input volume, the second
dimension is connected only to the second (green) channel, and the last one is
connected only to the red channel. As in Figure 3.4(3), we convolve each of the
three dimensions of the ˇ1 filter through the particular channel to which it is
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Figure 3.6 An example of a convolutional layer in a CNN for image
processing

connected, multiplying in each convolution the aligned input and filter indices,
then summing the outputs within the filter, and finally recording (in the output
volume) the sum across the three filter dimensions. If desired, we can also use
this output volume as the input volume in a new convolutional layer, extending
and improving the learning process and model accuracy.
In Figure 3.6, the indices of the input X, of the filter (ˇ1) performing the

convolution, and of the output volume Z involved in the first convolution are
highlighted in orange.Wemultiply and sum up each index of the first dimension
of the ˇ1 filter to the top-left region of the blue channel: ..1��1/C.1��1/C

.2�1/C.1�1/ D 1/; each index of the second dimension to the top-left region
of the green channel: ..2 � �1/ C .1 � 0/ C .2 � 0/ C .2 � �1/ D �4/; and
each index of the third filter dimension to the top-left region of the red channel:
..2 � �1/ C .1 � �1/ C .2 � 0/ C .1 � 0/ D �3/. Finally, we record the sum
of all these partial outputs (one for each color channel) in the top corner of the
output volume (in Z11 D 1 C .�4/ C .�3/ D �6/. You can also see the input
parts, filters, and output value involved in another convolution, highlighted in
purple. This animation12 illustrates the process dynamically.
State-of-the-art CNNs often have convolutional layers with numerous fil-

ters (our example in Figure 3.6 has only two), generating output volumes
(or hidden layers) of a large size. The advantage of transforming the input

12 http://cs231n.github.io//assets/conv-demo/index.html, last accessed April 26, 2020 via CS231n
Convolutional Neural Networks for Visual Recognition (2020).
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Figure 3.7 A convolutional layer (filters ˇ1 and ˇ2 create output volume Z)
and a pooling layer (output volume Z is downsampled to Max-Pooled Volume

K using the max operator)

image into a high-dimensional volume is that we increase the number of fea-
tures we can potentially learn from. However, high-dimensional volumes can
also be problematic. The number of parameters to learn via stochastic gra-
dient descent and the computational power required to estimate the model
may drastically increase, and we risk overfitting the model. To address such
concerns, researchers often downsample and reduce the dimensionality of out-
put volumes. These downsampled layers are called pooling layers. In Figure
3.7 we add a pooling layer to the convolutional layer of the previous figure.
Specifically, we split each of the two Z dimensions into four quadrants (for
example, one quadrant of the first dimension f�6; �4; �6; �3g is highlighted
in orange and another quadrant of the second dimension is highlighted in pur-
ple f1; �2; 0; 4g) and build a new output (Max-Pooled) volume K by taking the
maximum value of the quadrants (�3 and 4 respectively for the highlighted
quadrants).
In a CNN for image classification, the first layer is always convolutional.

Researchers then combine additional convolutional layers with ReLu layers
that add nonlinearities, pooling layers (to avoid overfitting and reducing com-
putation time and complexity), and fully connected layers (a set of weights that
are connected to all of the input features). The final (usually fully connected)
layer reduces the second-to-last layer into a one-dimensional vector equal in
size to the number of unique classes to be predicted. A final common step is to
transform the final class scores into probabilities that sum to one by attaching
a Softmax layer (or multinomial model) onto the final fully connected layer.
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Figure 3.8 An example of an entire CNN for image classification.
Source: Stanford cs231 course, reproduced with permission from Serena Yeung.

Once a CNN has been trained, which means that its parameter values lead to
an acceptable predictive accuracy, it can be used to predict the labels of held-out
images. Figure 3.8 displays the application of a CNN trained to recognize 1,000
different classes to a new image. The first convolutional layer has 10 filters,
generating a 10-dimensional output volume. Additional convolutional layers
with 10 filters are combined with ReLu and pooling layers. Finally, a fully
connected layer predicts the class of the image, and a softmax layer transforms
the unidimensional output into a set of class probabilities. The bar graph on the
far right of the figure displays the five highest probability classes. The highest
probability class, a car, is the correct prediction in this case.

4 Overview of Fine-Tuning a CNN Classifier for Images
In the previous section, we provided a theoretical overview of what convolu-
tional neural networks are and how they work. In this chapter we address the
practicalities of developing a CNN for specific research-driven image classi-
fication tasks. Our focus is on explaining how one can reuse a CNN that has
already been built and trained on large datasets of images (e.g., trained to clas-
sify images into the 1,000 objects that are part of the ImageNet competition)
to then build a classifier to perform a new classification task of interest to the
researcher. This process is known as fine-tuning (or transfer learning) and it
can more efficiently achieve accurate results than building and training a CNN
from scratch (Krizhevsky, Sutskever, and Hinton [2012]). We first explain fine-
tuning in detail. Then we describe the preprocessing steps needed to prepare
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images before feeding them into a CNN. We next explain the range of hyper-
parameters involved in the training (and/or fine-tuning) of a CNN. We end by
providing some practical recommendations on how to evaluate and diagnose
the performance of a CNN. The goal of this section is to provide a first overview
of the practicalities of building and fine-tuning a CNN for image classifica-
tion. In Section 7 we show how to actually fine-tune a CNN using examples of
interest to social scientists.

4.1 Fine-Tuning a CNN
CNNs with high predictive accuracy typically have many layers and are trained
using hundreds of thousands (or even millions) of images. One of the more
popular training sets, ImageNet, includes 1.3 million high-resolution images
labeled for 1,000 different objects (such as different kinds of animals and vehi-
cles). Recent CNNs trained on ImageNet have tens or even hundreds of layers.
For example, the latest version of the CNN commonly known as ResNet has
152 layers (He, Zhang, et al. 2015).
Powerful computers with multiple graphics processing units (GPUs) are

required to train such models. However, training CNNs from scratch is often
unnecessary. Table 4.1 lists a substantial number of pretrained CNNs available
through PyTorch’s torchvision,13 an open-source machine learning library for
Python. The two right-hand columns of Table 4.1 report how well each CNN
performed in predicting the 1,000 ImageNet labels. AlexNet (the first well-
known CNN for image recognition), for example, incorrectly predicted the true
label as its first guess 43.45% of the time. About one-fifth of the time (20.91%),
none of its top five predictions were correct. Resnet-152, on the other hand, was
much more accurate (21.69% Top-1 error and 5.94% Top-5 error).
Although each of these CNNs were originally trained to predict the 1,000

ImageNet classes, they can be adapted to perform new classification tasks (such
as a binary prediction of whether or not an image includes people protest-
ing). Fine-tuning takes advantage of the fact that a trained CNN has already
“learned” a lot about which image features and parameter combinations per-
form best in predicting an image classification scheme. At a minimum, all that
is required for fine-tuning is to alter the last fully connected layer of the net-
work and do some minor retraining of parameters. As we will show in Section
7, high predictive accuracy is possible with fine-tuning, even with small train-
ing sets. Compared to training from scratch, the process also takes much less
training time.

13 https://pytorch.org/docs/stable/torchvision/models.html, last accessed April 26, 2020 (torchvi-
sion.models— PyTorch Master Documentation 2020).
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Table 4.1 Pretrained CNNs available through PyTorch with error on
ImageNet

Network Top-1 Error Top-5 Error

AlexNet 43.45 20:91
VGG-11 30.98 11:37
VGG-13 30.07 10:75
VGG-16 28.41 9:62
VGG-19 27.62 9:12
VGG-11 with batch normalization 29.62 10:19
VGG-13 with batch normalization 28.45 9:63
VGG-16 with batch normalization 26.63 8:50
VGG-19 with batch normalization 25.76 8:15
ResNet-18 30.24 10:92
ResNet-34 26.70 8:58
ResNet-50 23.85 7:13
ResNet-101 22.63 6:44
ResNet-152 21.69 5:94
SqueezeNet 1.0 41.90 19:58
SqueezeNet 1.1 41.81 19:38
Densenet-121 25.35 7:83
Densenet-169 24.00 7:00
Densenet-201 22.80 6:43
Densenet-161 22.35 6:20
Inception v3 22.55 6:44

In our examples in Section 7, we fine-tune a pretrained 18-layer CNN from
He, Zhang, et al. (2015) called ResNet (the “Res” stands for residual learning)
eight times to build seven binary image classifiers and one multiclass image
classifier. Figure 4.1 compares the architecture of 5 different ResNets. All of
them start with a convolutional layer that includes 64 7� 7 filters (conv1) fol-
lowed by amax-pooling step. All of them also contain the same 4 convolutional
“blocks” (conv2_x, conv3_x, conv4_x, and conv5_x). However, each has
a different number of layers in each block. Compared to the others, ResNet-18
has fewer (4) layers in each of the 4 blocks (4 layers times 4 blocks plus the
first convolutional layer and the last fully connected layer equals the total of
18 layers).
The main step for fine-tuning a pretrained CNN is to alter the last fully

connected layer to predict the desired number of outcome classes. More com-
plicated fine-tuning examples may also take additional steps, such as adding

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108860741
Downloaded from https://www.cambridge.org/core. IP address: 83.52.229.106, on 21 Jul 2020 at 07:49:22, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108860741
https://www.cambridge.org/core


Images as Data for Social Science Research 27

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2

3×3, 64

3×3, 64
×2

3×3, 64

3×3, 64
×3





1×1, 64

3×3, 64

1×1, 256



×3





1×1, 64

3×3, 64

1×1, 256



×3





1×1, 64

3×3, 64

1×1, 256



×3

conv3 x 28×28
3×3, 128

3×3, 128
×2

3×3, 128

3×3, 128
×4





1×1, 128
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Figure 4.1 Architecture of the convolutional neural nets trained by He,
Zhang, et al. 2015, collectively known as ResNets.

layers or “freezing” some of the initial layers so that they are not adjusted with
the addition of new data and training. ResNet-18 was originally developed to
predict the 1,000 classes of the ImageNet competition corpus. For our examples
in Section 7, we are primarily interested in predicting whether an image belongs
to a single class or not (a binary classifier). In Figure 4.1 (in red), the last fully
connected layer of ResNet-18 is a vector of 1,000 weights that is multiplied by
the entire volume output from conv5_x (after first using average pooling to
reduce the size of the output). A softmax (multinomial) model is then used to
“translate” the resulting vector output into 1,000 class probabilities that add up
to 1. For binary fine-tuning, we replace this last layer with a new 1�1�2 fully
connected layer. The starting weights of this 1 � 1 � 2 layer are initialized at
random (from a Gaussian distribution with a standard deviation of 0.01). After
altering the architecture, we retrain the model for a set number of epochs using
train and validation images that we know are true positives and true negatives
for the classes of interest. For our examples in Section 7, we will generally set
the train/validation split to 80%/20% (see Section 4.4 for more on this choice).
In order to retrain the model with new images, we usually need to do some
image preprocessing, as described in the next section.

4.2 Preprocessing
How dowe go from having a set of image files on our computer to feeding them
to a CNNwhile making sure they are appropriately formatted for accurate CNN
training? There are three main objectives driving images preprocessing: (1) all
of the images need to be of the same size, (2) the color intensities of the images
should be normalized, and (3) we can consider increasing the size of the train
set with data augmentation. The size of the input volume (images) needs to be
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constant because it determines the size of the intermediate layers and the size
of some parameter matrices (e.g., the size of fully connected layers), which
needs to be fixed. For example, input images need to be 224 � 224 pixels to
fit into the ResNet architecture. We also want to normalize the input values
(pixel-level color intensities ranging from 0 to 255) and center the mean of the
color intensities around 0 because it facilitates calculating the gradient and the
training of the CNN. Finally, we can artificially augment the size of our training
sets (improving accuracy) by flipping or rotating images (and performing other
tricks) during preprocessing.

4.2.1 Resizing

Figure 4.2 shows the four main operations that are (or can be) involved in
preprocessing images to make sure they are all of the same size: squishing,
cropping, rescaling, and padding. The example image in Figure 4.2 is taken
from a dataset of images shared on Twitter in support of the #FamiliesBelong-
Together movement (www.familiesbelongtogether.org/, last accessed April 26,
2020) in 2018. Users shared a wide range of images in support of the move-
ment, including images of people wearing a jacket (or versions thereof) that
Melania Trump wore on a visit to a shelter for immigrant children near the bor-
der with Mexico (see Cillizza [2018] for context). If we wanted to know where
this coat appears in tens of thousands of images shared on Twitter, perhaps to
test a theory of symbolic resonance in protest movements, we could fine-tune
an existing classifier to recognize the coat. To do so, our training data of true
positives and negatives must fit the input requirements of the CNNwe are fine-
tuning. Most existing open-source CNNs take inputs of a square size (images

Figure 4.2 Image-resizing techniques.
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with the same height and width), for example images of size 224� 224 pixels.
We have multiple options for how to resize images into this required size.
Squishing means resizing the original dimensions of an image to a particular

size without keeping the image aspect ratio (the ratio between the height and
width of the original picture). As you can see in Figure 4.2, if some images
in your dataset are far from having square dimensions, this means that you
need to substantially deform them, which is far from ideal because image and
shape deformations canmake it harder for the algorithm to learn how to classify
particular classes/objects.
An alternative resizing approach is cropping: to use only part of the image

(a patch) that fits the desired size. As you can see in Figure 4.2, in this case
we are not deforming the image. However, given the big difference between
height and width, we are only taking a small part of the picture into account. If,
for example, the research objective is to find instances of images with people
wearing the jacket, not including the jacket’s arms and hood in the patch during
training may lower the accuracy of the CNN.
Another option is rescaling the image, as shown in the two right subfig-

ures in Figure 4.2. Rescaling consists of reducing the size of the image while
maintaining its aspect ratio by decreasing the height or the width to the desired
size (e.g., 224), and then decreasing the size of the other dimension such that
we keep the same original proportion between height and width. This resiz-
ing technique avoids deforming the image. However, for nonsquare images, an
extra step is needed to make sure the image fulfills the required square dimen-
sions of most pretrained CNNs. One option is to use padding. This technique
consists of adding as many columns (or rows) of 0s to the sides (or to the top
or bottom) of the rescaled image as needed to fulfill the required input size (see
second subfigure from the right in Figure 4.2). Padding might not be the best
resizing approach if instances of the same class of interest in our dataset (e.g.,
images of people wearing versions of Melania Trump’s jacket) have varied
aspect ratios (e.g., some are of a vertical layout while others are more horizon-
tal), and so for some instances we are padding the sides and for some others
the top or bottom of the image. In this case a more suitable approach is to
crop the images after rescaling (see the rightmost subfigure in Figure 4.2).
Trying out different preprocessing choices can help improve the accuracy of
the CNN.

4.2.2 Normalization

Two input normalization preprocessing steps can improve model accuracy as
well as computation speed: scaling and centering. As we discussed in the
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previous section, images can be represented as three dimensional matrices (one
dimension for each RGB color channel: red, green, and blue) where each cell
indicates the intensity of that color in that particular pixel. The values indicating
these color intensities usually range from 0 to 255. Two main problems emerge
when using these original 0–255 values as inputs to train or fine-tune a CNN.
First, two instances of the same class (e.g., two jacket images) might have dif-
ferent color intensities because one might be brighter than the other, making it
difficult for the CNN to learn that those are indeed two examples of the same
class. Scaling helps solve this problem by transforming all the data onto the
same scale. Computer vision scholars often transform the raw pixel level inten-
sities of an image into a standardized 0–1 range by applying Equation 4.1 (or
a variant thereof) to each image pixel xi;j from each color channel z. On top
of scaling, centering the values around 0 also helps with the calculation of
the gradient, speeding up the learning process. For this reason, as indicated in
Equation 4.2, practitioners often also subtract from each scaled pixel intensity
yijz the mean of the intensities for that color (�z) and divide it by the standard
deviation of the intensities (�z).

yijz D
xijz �

Pn
1 xijz
n

max.xijz/ � min.xijz/
(4.1)

sijz D
yijz � �z

�z
(4.2)

4.2.3 Data Augmentation

One can artificially increase the size of a training set to improve the accuracy
of a classifier by using different versions of the original images during training
(Taylor and Nitschke 2017). Two main data augmentation techniques are often
used: random crop and horizontal flip. As shown in Figure 4.3, random crop
means selecting a different patch of a given image at each training epoch. As
instances of the same class are likely to have different aspect ratios, this tech-
nique can improve the generalizability and accuracy of the CNN. Another way
of increasing the number of training examples is by performing a horizon-
tal flip (as shown in the rightmost subfigure in Figure 4.3). Usually, in each
epoch researchers flip each picture in the training set based on a predetermined
probability.

4.3 Preprocessing with Python
Python packages for deep learning programming come with off-the-shelf func-
tions to apply the discussed preprocessing techniques. Code chunk 1 illustrates

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108860741
Downloaded from https://www.cambridge.org/core. IP address: 83.52.229.106, on 21 Jul 2020 at 07:49:22, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108860741
https://www.cambridge.org/core


Images as Data for Social Science Research 31

pytorch code for resizing, normalizing, and augmenting the training and
validation data to be used for training or fine-tuning a CNN. The code assumes
that a set of .jpg/.jpeg pictures are located in a particular data_path (see line
16), and that they have already been split into train and validation sets, and
that the images belonging to each set have already been placed into two differ-
ent subdirectories named train and val. The data_transforms object contains
instructions about how to preprocess the training and validation images. In
this case, before each forward propagation of the CNN we perform the fol-
lowing preprocessing to the images in the training set: (a) we crop a random
224�224 patch from the image (transforms.RandomResizedCrop(224); the
patch will be different at each epoch), (b) we decide whether to flip the image
(RandomHorizontalFlip(), with a default probability of .5), (c) we scale the
pixel-level intensities to a 0–1 range (transforms.ToTensor()), and (d) we cen-
ter scaled pixel- level instensities around 0, by taking into account the average
and standard deviation of the intensities of the images in the training set for
each color channel (transforms.Normalize()).
Then, for each image in the validation set: (a) we first rescale the image

(transforms.Resize(256)), (b) we select the middle 224 � 224 patch, (c) we
scale (transforms.ToTensor()) and (d) we center (transforms.Normalize())
the pixel level intensities (using the mean and standard deviations for each
color channel based only on the images in the training set). Finally, the
torch.utils.data.DataLoader() (lines 19 and 20) function takes care of
loading the data in batches and applying these preprocessing steps at each
epoch.

Figure 4.3 Data augmentation techniques.
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1 from torchvision import transforms
2
3 data_transforms = {
4 ’ train ’ : transforms .Compose( [
5 transforms .RandomResizedCrop(224) ,
6 transforms . RandomHorizontalFlip() ,
7 transforms .ToTensor() ,
8 transforms . Normalize ([0.485 , 0.456 , 0.406] , [0.229 , 0.224 , 0.225])
9 ] ) ,
10 ’ val ’ : transforms .Compose( [
11 transforms . Resize(256) ,
12 transforms . CenterCrop(224) ,
13 transforms .ToTensor() ,
14 transforms . Normalize ([0.485 , 0.456 , 0.406] , [0.229 , 0.224 , 0.225])
15 ] ) ,
16 }
17
18 data_dir = ’data_path/ ’
19 image_datasets = {x: datasets . ImageFolder(os . path . join (data_dir , x) ,
20 data_transforms [x ] ) for x in [ ’ train ’ , ’ val ’ ]}
21 dataloaders = {x: torch . ut i l s . data . DataLoader(image_datasets [x ] ,
22 batch_size=4, shuff le=True , num_workers=4) for x in
23 [ ’ train ’ , ’ val ’ ]}

Listing 1 Pytorch code for image preprocessing

4.4 Hyperparameters in CNNs
Hyperparameters are elements of the model that the researcher specifies values
for before fine-tuning begins (whereas the parameters of a model are updated
during the training). We can think of them as tuning knobs, or as a set of dials
that can be spun to different values. Researchers generally try many differ-
ent combinations of hyperparameters over many rounds of fine-tuning, usually
using a grid search of hyperparameters. The best hyperparameter configura-
tion is the one that gives us the most accurate results in the shortest amount of
time without overfitting. Overfitting means that the model has learned how to
classify the images in the train set extremely well, but performs poorly on the
the validation images. In short, the CNN does not generalize well to pictures
outside the training set. For example, the model may produce an extremely
accurate classifier of the Melania Trump jacket based on the training data. But
if every image of the jacket in the training set is worn by a woman with dark
hair, it may be that the model is overfitting by assigning a correct prediction
based on the hair color, not on the jacket features. If this is the case, the trained
model will fail on a picture of the jacket worn by someone with blonde or blue
hair.
Unfortunately, the best combination of hyperparameters is not something

that a researcher can know in advance. Figure 4.4 visualizes the predictive
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accuracy of different combinations of two parameters x and z (recall that state-
of-the-art CNNs have millions of parameters). The peaks (in red) indicate
better performing combinations (they have the lowest error rates). The best-
performing combination, the global maximum (B), is located around (x D 7,
z D 1). With millions of parameters, comparing every possible combination of
parameters to find the global maximum would take a very long time. Hyperpa-
rameter settings typically specify how to constrain the parameter-space search
in the interests of saving time and computing power. But in doing so these
settings also introduce the possibility that we will not locate a highly accu-
rate maximum, perhaps getting stuck on a less-accurate local maximum (A)
instead. Figure 4.4 helps to explain why. Suppose that we considered only a
limited range of x and z values in the interest of computational time. If we set a
small number of model epochs (say, 10) and specify small jumps in values of
x and z, then our search may never get to the combination of x and z that pro-
duces the best maximum, even if the model is exploring in the right direction.
The model does not get to explore much of the parameter space with only 10
small jumps. On the other hand, if we specify large jumps, then we may skip
over the best maximum entirely. Unfortunately, there is no way to know if we
are at the best possible maximum. All we can do is try to get closer to it by
experimenting with hyperparameter values (adjusting the size of the jump, or
the learning rate, at each epoch in this toy example).
In the glossary below we describe the most important hyperparameters

involved in training a CNN. In the example applications and code in Section
7, we try out a range of different hyperparameters to fine-tune a CNN clas-
sifier and explore the extent to which results depend on the specified setup.
An excellent interactive (high-level) introduction to hyperparameters is avail-
able on the TensorFlow website.14 Smith (2018) offers additional insights and
tips for the “black art” of hyperparameter selection. Tanksale (2018) is also a
nice introduction. Hyperparameter values can have an effect on the accuracy of
the CNN. However, it is difficult to know ex ante which hyperparameters are
more important in determining the accuracy of the model. Different tasks may
require different tweaks to hyperparameters. Researchers usually try out differ-
ent hyperparameter combinations to find out the one yielding the most accurate
results (Domhan, Springenberg, and Hutter 2015). We build on our own expe-
rience to sort the following hyperparameter glossary based on relevance. We
start with the hyperparameters that have had a large impact on the accuracy of

14 https://playground.tensorflow.org, last accessed April 26, 2020 (A Neural Network Play-
ground 2020).
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Figure 4.4 A nonconvex two-parameter space.

CNNs in our own research. We then transition to additional hyperparameters
that can potentially affect accuracy.

� Epochs/iterations: Epochs are the number of times the model will train over
the full set of images in the training set. Iterations are the number of forward
propagations that it takes to complete an epoch. The number of iterations
depends on the batch size (see definition of batch size below). If, for example,
we split a dataset of 5,000 training images into batches of 500, it will take 10
iterations to complete an epoch. Usually one only executes backward prop-
agation (and calculates the gradient) at the end of each epoch, after finishing
all of the iterations and calculating the final loss for a given epoch. More
epochs can lead to better results, but too many epochs can lead to model
overfitting. Having a validation set (see ratio of train-validation below) can
help prevent overfitting. CNN performance based on the training set tends to
improve after each epoch. However, there usually comes a point after which
each additional epoch results in worse accuracy based on the validation set.
At that point we want to stop the training process because more epochs will
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likely result in a model that does not generalize well to new pictures. The
number of epochs determines whether a model has been trained long enough
(or for too long), and so it has a strong impact on the accuracy of the CNN.
Researchers need to make a decision about the number of epochs both when
training a CNN from scratch and when fine-tuning an existing model.

� Learning rate: How much the weights/coefficients can change in each
model optimization (at the end of each epoch). We can think of this as how
big a step we want the model to take in the potential coefficient space while
it looks for the weights that minimize the error. If the step is too big, we will
miss many potential weights combinations that could significantly reduce
the error. If the step is too small, the model will take an extremely long time
and may never reach potential weights combinations that minimize the error.
Getting the “right” learning rate for a given model is generally approached
with trial and error. Starting with a large rate and then decreasing it as the
number of epochs increases is a common practice. The step size and gamma
hyperparameters described below help to achieve this change in the learning
rate as the number of epochs increases. You canmodify the learning rate both
when training a CNN from scratch as well as when fine-tuning a pretrained
model.

� Dropout rate: A common practice to avoid overfitting (to avoid the model
getting good at predicting the outcome for the images in the train but not the
validation set) is to randomly set some of the values in the weight matrices
and filters to 0. The dropout rate specifies how often we do so, expressed as
the probability of setting a given weight to 0, usually set between 0.4 and 0.9
(Srivastava et al. 2014). See Budhiraja (2016) for more detail. When fine-
tuning a pretrained model, one can decide to set a dropout rate for newly
added layers as well as for pretrained layers (if one decides to allow the
weights of pretrained layers to be updated).

� Batch size:When training or fine-tuning a CNN, in each epoch we want to
use all images in the training set to make sure we take advantage of, and
learn from, all available examples. However, there are two main reasons
for not using them all at once when performing the forward and backward
propagation and to instead pass them through the CNN in smaller batch
sizes: (1) it helps reducing computation time and required memory and (2) it
avoids model overfitting (Wilson andMartinez [2003], but only if we update
the model weights [perform the backward propagation] after each iteration
instead of at the end of each epoch). You can set the batch size both when
training a CNN from scratch and when fine-tuning a pretrained one.

� Ratio of train-validation: The percentage split of labeled images, true pos-
itives and true negatives, into the train and validation sets. In each training
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epoch/iteration, the parameters in a CNN are learned via forward and back-
ward propagation on the images in the train set. To prevent overfitting, the
loss and accuracy of the CNN is measured by evaluating the difference
between the class scores and the actual classes of the images in the vali-
dation set. In the examples we run in Section 7, we use an 80%-20% split,
which is fairly standard in the field. Increasingly, researchers are using a
train-validation-test split, along the lines of 80%-10%-10%, where a final
chunk of images are used only for a final held-out check once the CNN
has been trained under the preferred hyperparameter combination. Although
images in the validation set are not used for training (as discussed earlier in
the Epochs/iterations description), model performance on the validation set
is often used to decide when to stop training themodel over further iterations.
Generally, researchers stop training when the loss for the validation set stops
improving (even if the loss for the training set continues to improve). This
could mean that we are indirectly overfitting/underfitting the model to the
validation set (e.g., the validation loss for a different set might stop improv-
ing slightly sooner or slightly later). To assess the extent to which this is the
case, once the CNN is trained, researchers check the out-of-sample accuracy
one final time using a completely untouched test set that has not been used
either for training or to decide when to stop training the CNN.

� Loss function: This determines how we evaluate the accuracy of the model.
In a linear model, for example, we usually use the sum of squared errors as
the loss function. The aim is to minimize the predictive loss (or error).

� Activation functions: ReLu, sigmoid, tanh, and other nonlinear transforma-
tions are applied to the data in different layers, as introduced in Figure 3.3
and seen in Figures 3.4(2) and 3.4(5). Unless you are developing a CNN from
scratch, these are normally already set in the model that you are fine-tuning.

� Optimizer: This sets how we try to minimize the loss function (and max-
imize predictive accuracy) by slightly changing the model parameters and
checking which configuration achieves the lowest error. Here we are decid-
ing how to set the next weights configuration during back propagation. A
common optimizer is Stochastic Gradient Descent (SGD), and SGD with
momentum (see below for a description ofmomentum), but other optimizers
are available and can be easily implemented using existing machine learning
Python libraries. See Ruder (2016) for an overview on optimizers.

� Momentum (or momentum factor): The momentum and the learning rate
in combination determine the “direction” (within a coefficient space) and
size of the change in weights. Momentum helps prevent the model from
becoming ”stuck” by taking into consideration several of the previous gra-
dients instead of exploring a specific direction of the parameter space based
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on a single gradient. This hyperparameter ranges from 0 to 1. Goh (2017) is
a helpful post with more details.

� Step size: The step size and the gamma combine to shrink the learning rate
as the number of epochs progresses. The step size defines after how long
the learning rate is subject to decay. This will become relevant only if you
have specified a number of epochs higher than the step size. For example,
if the step size is 5 and the number of epochs is 20, after every five epochs
the learning rate will shrink. Confusingly, some sources refer to the learning
rate as the step size.

� Gamma: Decay (multiplicative) of the learning rate that will apply after
every step-size number of epochs. Default in PyTorch is 0.1.

4.5 Diagnostics
How do we know if a trained model is performing well? To evaluate pre-
dictive performance, we use a standard set of measures. Accuracy refers to
the proportion of cases (positive and negative) that are correctly predicted by
the trained model. Precision refers to how often the predicted positive cases
are correct, while recall refers to how often actual positive cases are pre-
dicted to be positive. An F1 score is the harmonic mean of precision and
recall. Put another way, precision is a measure of false positive error while
recall is a measure of false negative error. The precision/recall distinction can
be important because it provides additional information into the distribution
of prediction errors. Depending on the objective, for example, a researcher
may be more concerned with maximizing recall (to ensure that possible cases
are not missed) than overall accuracy. A confusion matrix is a useful way
to get a sense of how prediction errors are distributed (see Section 6 for
examples).
To prevent overfitting, researchers check for model performance on a vali-

dation set that was not used for training. If over many epochs the training loss
continues to drop while loss on the validation set flattens or increases, this is a
sign of overfitting.
If a model is not performing as desired, researchers can adjust hyperparam-

eters and train again. One of the advantages of images research, however, is
that we can also easily look at the images that the model gets wrong. Is there
something similar about the images that are false positives or false negatives?
For example, do we see that all the false negatives for Melania Trump’s jacket
are worn by blondes? That may tell us that we need to include more diversity in
the training images for the jacket. Adding more or more diverse training data
may be a solution to poor model performance.
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One of the challenges of evaluating where and how a CNN fails or succeeds
is in the lack of interpretability of parameters or filters. It can be very difficult to
tell which aspect of an image is driving classification, and if the model is pick-
ing up on some incidental feature instead of something that consistently drives
classification, these models may have low generalizability. Ribeiro, Singh, and
Guestrin (2016), for example, found that a model predicting whether a picture
was of a husky or a wolf was being driven not by any features of the animals
but instead by whether or not there was snow in the picture. Making the deep,
abstract representations from hidden layers more interpretable by humans is a
growing area of computer vision research, so we may be close to unlocking the
deep learning black box (see Zhang and Zhu [2018] for an overview of current
strategies for interpretability).
We return to diagnostics and specific techniques for improving model pre-

dictions in Section 7. Moving from the theory of deep learning and fine-tuning
to applications, in the next section we introduce the original Black LivesMatter
images study and describe the data provided for the applied examples.

5 Political Science Working Example: Images Related to
a Black Lives Matter Protest

Having explained the theory and practicalities of working with CNNs for image
classification, in Sections 6 and 7 we illustrate (1) how to use off-the-shelf
autotaggers and (2) how to fine-tune your own CNN for addressing research
questions of relevance to social scientists. In this section we introduce and
contextualize the image dataset from our own prior research that we will use
in these proceeding sections. In an earlier project (Casas and Webb Williams
2018), we studied whether the images included in social media posts could
predict online social movement participation. Scholars believe that images play
key roles in social movement participation in the digital media age (Bennett and
Segerberg 2013; Bimber, Flanagin, and Stohl 2005; Castells 2012; Howard and
Hussain 2013; Kharroub and Bas 2015). Systematic, large-N studies are rare,
however. We wanted to study the impact of social media communications lead-
ing up to and during an offline protest. Could we test if the image content of a
Twitter message predicted how likely it was that the message would be shared
online?
For a two-week period around an April 14, 2015 Black Lives Matter

protest (known as “Shutdown A14”), we collected Twitter messages contain-
ing one or more of the following keywords and hashtags: #shutdownA14,
murder by police, mass incarceration, shutdownA14, killer cops, police mur-
der, #A14, stop business as usual, stolenlives, massincarceration, stolen lives,
#policebrutality, #stolenlives, #blacklivesmatter, and black lives. In total, we
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collected about 150,000 tweets. The tweets included around 9,500 unique
images.
We were particularly interested in testing the following expectations as to

why images might play a mobilizing role. First, the core hypotheses concerned
the emotional content evoked by the pictures. Building on a specific model
from political psychology, the Affective Intelligence model (Marcus, Neuman,
and MacKuen 2000), we expected that images evoking higher levels of anger,
enthusiasm, and fear/anxiety would attract more online attention (e.g., would
be shared by a larger number of Twitter users), whereas images evoking higher
levels of sadness would have the opposite effect. We also explored the role
of disgust but had no clear expectation about its effect. Beyond these emo-
tions effects, we had two other expectations that we used as controls in the
analyses. First, we theorized that images are in part mobilizing because they
can increase one’s expectations about the success of a movement. To control
for such an effect, we examined instances where images contained protest-
ing crowds, which we argued were signals of the movement’s success. We
also theorized that images are in part mobilizing because they can activate
social collective identities. To control for this mechanismwe labeled images for
symbols of collective identity, such as flags or religious symbols. After com-
pleting the study, we became interested in the potential effect that the presence
of celebrities or other opinion leaders might have on mobilization. Although
we have not tested this mechanism systematically, it drives our focus in this
Element on identifying John Legend in images.
In the original project we (together with undergraduates and Mechanical

Turk workers) manually assigned multiple labels to the images. Testing which
theoretical mechanisms were more or less mobilizing required labeling these
images for the presence or absence of certain features, including whether or not
the picture contained a protest and/or a symbol of collective identity, and how
the image made the annotator feel.
See Casas andWebbWilliams (2018) for a complete presentation and discus-

sion of the research design and findings. In Figures 5.1 and 5.2 we present the
key findings of the study. In Figure 5.1 we show that in line with our expec-
tations, higher levels of evoked enthusiasm and anxiety/fear were positively
correlated with higher rates of online attention (the overall number of retweets
– left subfigure) and online diffusion (retweets by users who had not previously
messaged about the protest – right subfigure). We were not able to corroborate
our expectation about the effect of evoked anger, but we did partially corrob-
orate the hypothesis that images evoking sadness would be associated with
lower levels of protest diffusion. As for the two control mechanisms (protest
and symbol), we found support for the claim that images are in part mobilizing
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Figure 5.1 Figure 5 from Casas and Webb Williams (2018).

Figure 5.2 Figure 6 from Casas and Webb Williams (2018).

because they increase people’s expectation about a movement’s success and
because they appeal to common social identities.
The findings are a good example of why social scientists should care about

images and image effects. In addition, the images collected and labeled for
that study serve as a real-world dataset for illustrating how to use CNNs for
image classification. In the previous study we did not use the computer vision
techniques introduced in this Element. But the study motivated our interest in
computer vision, as we wondered whether or not we needed to invest so many
resources in manual image labeling. We are currently working on a similar but
much larger-scale project in which we develop and implement computer vision
techniques to further study the role of images in protest mobilization – now that
we have hundreds of thousands of images, automated techniques have become
all the more appealing.
Here we pull subsets of the labeled image corpus to demonstrate how to

use an off-the-shelf autotagging service (Amazon’s Rekognition) and how to
fine-tune an open-source CNN (from PyTorch). The full image corpus contains
8,148 unique images after image files smaller than 5kb are removed (small
images usually do not provide sufficient learning data for CNNs). Each image
has been labeled for whether it contained a protest, for whether it contained
the singer John Legend (who appeared because of a statement he made against
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mass incarceration around the time of the protest), and for how much fear,
anger, disgust, sadness, and enthusiasm the picture evoked in the annotator on
a scale of 0 to 10. In other words, the emotion scale measures how viewers
react to an image, not the emotions displayed by people in images.
Each of the 1,000 most commonly shared images in the corpus were labeled

by multiple annotators. In these cases, we assign a positive score if any
annotator indicated that an image contained a protest or John Legend. For the
emotions labels, we used average scores. For example, if an image made the
one annotator very angry (8 on a scale of 1–10) but had little effect on another
(2 out of 10), then the anger score for the image would be averaged to 5.
In the next section on autotaggers, we draw on these gold standard labeled

images to explore whether we could have successfully used a pretrained, off-
the-shelf autotagger in our prior study. Then, in Section 7, we draw on these
images to put fine-tuning a CNN to the test by performing the following specific
tasks: (1) identifying images of protests, (2) identifying an opinion leader (the
singer John Legend), and (3) capturing each of five emotions that an image
may evoke in viewers.

6 The Promise and Limits of Autotaggers
By off-the-shelf autotagger, we mean pretrained algorithms that will generate
image labels without any additional training. Many of these autotaggers rely
on CNNs or variants thereof. While the main focus of this Element is on fine-
tuningCNNs, autotaggers are an appealingmeans of processing large quantities
of image data. Despite the limitations, we are aware that for many scholars,
autotaggers are useful (see, for example, the commercial autotagging usage in
Horiuchi, Komatsu, and Nakaya [2012] and Nanne et al. [2019]). We wish to
bring both their benefits and their downsides to the attention of social scien-
tists. However, researchers who know that autotaggers will not work for their
research objectives may wish to skip this section and proceed to the fine-tuning
examples.
Some autotaggers are available through commercial services such as Ama-

zon’s Rekognition, Microsoft’s Computer Vision, or Google’s Cloud Vision.
Smaller companies, such as Clarifai, also exist and tend to specialize in par-
ticular types of commercial image labeling. These commercial services are
relatively easy to use, will generate a long list of labels with probabilities
for each image, and are free for smaller projects. They are also proprietary,
meaning that researchers generally will not have access to the CNNs doing the
labeling. There are also a number of open-source, noncommercial autotagger
options made available by researchers such as Redmon and Farhadi (2018) and
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Geitgey (2020). These open-source taggers may have a more limited set of
labels that they have been trained to recognize, or they may only perform a
single specific task, but it is possible for researchers to modify the taggers for
their own proposes (as we do below by fine-tuning an open-source CNN).
These autotagging tools can be quite useful, especially for a researcher who is

trying to get a general sense of what is in a large corpus of images by labeling for
the presence of standard objects. ImageNet,15 described in previous sections,
is the benchmark dataset for many autotaggers (Russakovsky et al. 2015). A
CNN trained on MS-Celeb-1M16 will predict the faces of 100,000 identified
celebrities (Guo et al. 2016). One trained on COCO17 will locate 80 common
objects within larger images (Lin et al. 2014).
Algorithms trained on these benchmark datasets can be powerful tools.

By adding more labeled images, many autotaggers can now recognize far
more than the original 1,000 ImageNet classes. Many autotaggers have also
expanded far beyond the standard tasks of object detection and recognition.
For example, Amazon’s Rekognition service can pull text from an image; pre-
dict whether an image contains sensitive content; analyze faces (e.g., guess
age, gender, and the emotion on the face); and recognize specific faces based
on stored facial data specified by the user. Most of these API calls return both
the result and a “confidence score” (the probability) for each image feature.
Despite their impressive strengths, these tools do have important limitations

that, in our view, warrant an investment in learning how to fine-tune CNNs to
perform custom tasks. One of the major limitations is that autotaggers many not
include labels that are important to social scientists. In addition, the labels are
not always accurate. Figure 6.1 presents Rekognition results for an image of a
familiar scene fromAmerican politics – a television newsroomwhere an anchor
and guest are discussing the White House. The Rekognition labels, however,
seem to describe a very different scene – a meal at a diner or an excursion
to the aquarium. Though explainable, these labels are also clearly wrong and
unhelpful for a researcher trying to identify politically relevant images.
The labels provided for the sample image in Figure 6.2 seem more accurate

though still imperfect (there is no highway in the image). The labels also fail to
recognize the distinctive shape of the United States Capitol on the mug, much
less the evocative repetition of that shape in the background.

15 http://image-net.org/index, last accessed April 26, 2020 (ImageNet 2020).
16 www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-

celebrities-real-world/, last accessed April 26, 2020 (MS-Celeb-1M: Challenge of Recognizing
One Million Celebrities in the Real World-Microsoft Research 2020).

17 http://cocodataset.org/#home, last accessed April 26, 2020 (COCO – Common Objects in
Context 2020).
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Figure 6.1 Rekognition labels with confidence: Human 99.1 Bar Counter
98.4 Pub 98.4 Diner 97.1 Food 97.1 Worker 83.4 Animal 76.4 Aquarium 76.4

Sea Life 76.4.
Source: https://twitter.com/AmericaNewsroom/status/910493241283358720

Figure 6.2 Rekognition labels with confidence: Coffee Cup 98.2 Cup 98.2
Road 60.6 Freeway 52.6 Highway 52.6 Building 50.5 City 50.5 Downtown

50.5
Source: https://twitter.com/SteveDaines/status/910494836729483264
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Figure 6.3 Top 25 most frequent labels assigned by Rekognition with >50%
confidence

We tested a sample of 815 images from our Black Lives Matter corpus
using Rekognition. Figure 6.3 reports the twenty-five most commonly returned
labels. Based on these labels, we might conclude that there are no images of
protest in the corpus. In fact, we know that there are many protest images in the
corpus, but Rekognition does not include a protest category. Autotaggers are
only as good as their training data and the labels they were assigned to learn.
Problematically, especially in the case of commercial autotaggers, researchers
do not know what constitutes the universe of potential labels. Only by running
the images through Rekognition did we learn that there was no protest tag (or
at least no protest tag that was returned – it may be that Amazon has trained for
that label but is suppressing results).
To further illustrate the point about the limitations of labels available

from different commercial autotagging services, we ran the same 815 BLM
images through two other commercial autotagging services – Google’s Cloud
Vision and Microsoft’s Computer Vision. Figure 6.4 displays the top ten most
frequently returned tags from each service for the images. Note that the distri-
bution of labels is quite varied based on the service. Google’s CloudVision does
return an explicit “protest” tag, for example, and also a tag for “demonstration.”
Microsoft has a “group” tag that was used often for the BLM images but was
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Figure 6.4 Top 10 most frequent labels assigned across commercial
autotaggers

never returned by the other services. All three services returned a “crowd” tag,
but at very different rates. These differing results should give researchers pause,
and they speak to the need to carefully validate any autotagger results, whether
commercial or open source, based on the required research task.
Algorithmic bias is a potential concern in any computer vision project and

another reason to be careful when using autotaggers. Taggers are only as good
as their training data, and recent discoveries have drawn attention to biases
along dimensions of race and gender. Simonite (2017) points to sexism in image
taggers, while Simonite (2018) notes racial bias (see also the useful discus-
sion in Lam et al. [2019]). It is essential that researchers validate their results
using a subset of “ground truth” images before using autotagger results in
analyses.
Another concern for researchers is reproducibility. Commercial servicesmay

not share the details of their models and data (or their universe of labels as
described earlier). It is difficult to know if the underlying model is even a
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CNN. And the models and data may be constantly updated as users upload new
images and as firms seek to improve accuracy by using that data for retraining.
Replicating labels from these services may therefore prove challenging, as the
underlying model may change between different passes of images through the
autotagger. Some services, such as IBM’s Visual Recognition, do offer version
control, a potential solution to this issue.
Finally there are privacy concerns. Many of these services retain copies of

submitted images and the predicted labels. How these images are used once
uploaded is largely beyond a researcher’s control. We discuss these ethical
considerations in more detail in Section 8.
Open-source autotaggers may not be as sophisticated and easy to use as com-

mercial services, but they can work quite well and help to address concerns
about research reproducibility and data privacy. As discussed in Section 7, they
also offer the possibility of fine-tuning, where a preexisting algorithm is trained
to assign a new set of labels.

6.1 Using a Commercial Autotagger: Amazon’s Rekognition
If a researcher is using a commercial autotagger in their project pipeline, once
images are collected and a subset is labeled for validation purposes, the images
are passed through the autotagger using an API. The results from the API calls
are stored and compared to manual labels for validation. We next discuss the
specific steps required to access one such service, Amazon’s Rekognition. The
general steps for using Amazon’s Rekognition autotagger are:

1. Gather images.
2. Deduplicate images.
3. Manually label a subset of images to validate autotagger accuracy.
4. Generate a list of images to tag.
5. Create Amazon Web Services (AWS) account and securely save keys.
6. Decide which Rekognition API call to use.
7. Use boto3 package in Python to run images from the list through the API.
8. Save the API results.
9. Check results for accuracy using manual labels.
10. If accuracy is acceptable, label additional images with API. If not, invest

in fine-tuning.

The specifics of the above steps will vary by commercial service (Amazon,
Microsoft, Google, etc.) and across open-source autotaggers. We also do not
address the first nontrivial task of collecting the images to be labeled. Dedupli-
cation reduces the number of images to be passed through the service (no need
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to pay twice for the same picture). The deduplication process will depend on
the image source. For example, identical images from different tweets typically
have the same URL, so the URL can be used to deduplicate. When there is no
comparable metadata, the images themselves can be compared for similarity.
An example deduplication script is available in the associated Github repo.18

With the correct setup of paths and image format (noting that the script is writ-
ten for jpgs), this script uses pixel similarity to build a CSV table linking the
first unique instance of an image to every other identical image in a corpus.
As always, it is important to visually confirm that the process is working as
expected.
Autotaggers may not include a researcher’s labels of interest. For autotag-

ging services that do not publish a full list of possible tags, the onlyway to know
if the service can accurately predict the desired label is compare the results to
a set of prelabeled images. This makes it possible to numerically assess the
autotagger’s accuracy, precision, and recall.
A step-by-step guide to using the AWS Rekognition API is posted as a guide

in the accompanying Github.19 Creating an AWS account is simple,20 and AWS
also offers helpful instructions for setting up and securely saving access keys21

once an account has been created. The next question is which of their services
to use. For example, Rekognition offers many different API calls,22 each of
which returns different results or combinations of results.
In this example, we use two Rekognition API calls: “Detecting Objects and

Scenes” and “Recognizing Celebrities.” The Python code and sample images
for these example applications are available in the project Github repo.23 The
code details how to loop images stored locally through the Rekognition API
to detect labels24 or to detect celebrities.25 We also offer the same code in the

18 https://github.com/norawebbwilliams/images_as_data/blob/master/code/03-image-deduplica
tion.py, last accessed April 26, 2020 (Webb Williams and Casas 2020).

19 https://github.com/norawebbwilliams/images_as_data/blob/master/notes/02-aws-rekognition-
own-machine.md, last accessed April 26, 2020 (Webb Williams and Casas 2020).

20 https://portal.aws.amazon.com/billing/signup#/start, last accessed April 26, 2020.
21 https://aws.amazon.com/getting-started/, last accessed April 26, 2020.
22 https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html, last accessed April 26, 2020.
23 https://github.com/norawebbwilliams/images_as_data, last accessed April 26, 2020 (Webb

Williams and Casas 2020).
24 https://github.com/norawebbwilliams/images_as_data/blob/master/code/AWS_rekognition/01

_aws_rekog_labels_example_py3.5.py, last accessed April 26, 2020 (Webb Williams and
Casas 2020).

25 https://github.com/norawebbwilliams/images_as_data/blob/master/code/AWS_rekognition/02
_aws_rekog_celeb_example_py3.5.py, last accessed April 26, 2020 (Webb Williams and
Casas 2020).
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form of Jupyter notebooks.26 The same code and notebooks are available in
the accompanying Code Ocean capusule, but note that this code will not run
because there are no API keys included with the capsule. The Rekognition API
response object (the result of an API call) contains many fields – for example,
see this official Rekognition API documentation,27 which lists everything that
is returned for the “objects and scenes” API call.
The example code we provide extracts, organizes, and exports the returned

fields of interest into a CSV file. Each row in the file includes an image-label
(for object detection) or an image-celebrity-face (for celebrity recognition).
Rekognition offers a limited number of free API calls per year and account

(at the time of writing it was 5,000). If you have already used your free credits,
you will pay for each API call. For example, if you run the same image through
both “Detecting Objects and Scenes” and “Recognizing Celebrities” you will
be charged for two calls. For current pricing see the official AWS site.28 Com-
mercial services also typically offer discounts for educators. Amazon offers
free credits for students and faculty through AWS Educate.29

6.2 Results from Amazon’s Rekognition
We ran the 815 most frequently shared BLM images through the object recog-
nition API to see whether Rekognition would identify street protests (according
to our annotators, 422 out of the 815 images contained a protest). This experi-
ment revealed that Rekognition does not appear to have a protest label, as that
tag was never returned by the API for any of our images. It is also possible that
it has been suppressed and is not publicly available, or perhaps the protest tag
exists but is extremely inaccurate.
Rekognition did assign a “crowd” label to 446 of our images with at least

50% confidence.Most of our protest images did contain crowds of people, so as
a validation example we compared the results of these two tags. The confusion
matrix presented in Table 6.1 reports precision and recall. If wewere to consider
the “crowd” tag as an appropriate proxy for protest images, the overall accuracy
of the autotagger would be 85.3%, with precision of 83.9% and recall of 88.6%.
Rekognition producedmore false positive errors (crowds that were not protests)
than false negative errors (protests that were not labeled as crowds). This seems
plausible given the lack of perfect congruity between a tag for protest and a

26 https://github.com/norawebbwilliams/images_as_data/tree/master/notebooks/AWS_rekogni
tion, last accessed April 26, 2020 (Webb Williams and Casas 2020).

27 https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rekognition.html
#Rekognition.Client.detect_labels, last accessed April 26, 2020.

28 https://aws.amazon.com/rekognition/pricing/, last accessed April 26, 2020.
29 https://aws.amazon.com/education/awseducate/, last accessed April 26, 2020.
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Table 6.1 Protest – Crowd Confusion Matrix (Number of images per
category)

No Protest (Manual) Yes Protest (Manual)

No Crowd (AWS) 321 48
Yes Crowd (AWS) 72 374

Table 6.2 John Legend Confusion Matrix (Number of images per category)

No Legend (Manual) Yes Legend (Manual)

No Legend (AWS) 779 5
Yes Legend (AWS) 0 31

tag for a crowd. People often gather for reasons other than protests (concerts,
for example), so there may be images in the corpus that Rekognition correctly
identifies as crowds that are not actually protests. And protests do not always
have to involve large crowds.
Despite the lack of an explicit “protest” tag, Rekognition might still be using

a filtering step for a project that needed to identify images of street protests.
After obtaining Rekognition results identifying crowds, a research team could
manually exclude the ones that were not protests. This could save considerable
time, although we would expect this would undercount protest images that did
not include crowds.
We also ran the 815 most common BLM images through the celebrity detec-

tor. At least one of our annotators recognized John Legend in 36 of these
images. Rekognition recognized him in 31 images. Table 6.2 reports overall
accuracy at an impressive 99.4%. Every image that Rekognition labeled as John
Legend was correct (100% precision). However, Rekognition missed 5 images
of John Legend identified by our annotators (86.1% recall). If we intended to
use Rekognition to label many more images for celebrities, we would want
to better understand these errors. Perhaps the false negatives are more com-
plicated images (e.g., they include multiple individuals)? Of course, it is also
possible that the false negatives reveal errors in our “gold standard” manual
labels and that Rekognition is actually more accurate than the initial results
suggest.
Autotaggers can be very useful for exploring a large image corpus. They

can automatically assign many labels along with confidence scores to each
image. This wealth of information does not require manual labeling beyond
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what is needed for validation and may lead to interesting discoveries and
hypothesis generation.Wewere surprised, for example, to discover that Rekog-
nition detected additional celebrities in our BLM images, including Pharell
Williams and Dr. Cornel West. Autotagger services may also generate useful
labels of interest (despite failing in our case for protests). In these cases it is
important to have a gold standard set of labels to assess accuracy. Even when
an autotagger does not offer labels of interest, automatic and manual labeling
may be combined in ways that reduce the costs of a labeling project (using auto-
taggers as a first-round filtering procedure, for example, to limit the amount of
manual labeling required in a second round).
However, as noted above, there are issues with using autotaggers, and

particularly with using commercial autotaggers, for image classification. An
alternative that we turn to next is to fine-tune a pretrained open-source CNN
algorithm. When fine-tuning, a researcher is no longer dependent on available
autotagger labels and retains control over the images and results. In contrast to
autotagging, the researcher must provide prelabeled images for training. But
fine-tuning can often produce accurate results with a relatively small number
of labeled examples.

7 Application: Fine-Tuning an Open-Source CNN
In this section, we demonstrate how to use fine-tuning to train seven binary
CNN classifiers and one multiclass CNN classifier. The first example classifier
performs an object recognition task – identifying street protests. The second is
a facial recognition task – identifying images of John Legend. The rest of the
binary tasks predict whether an image evokes each of five emotions – anger,
disgust, enthusiasm, fear, and sadness. Finally, the multiclass classifier shows
how to use the same method to predict an outcome that has more than two
classes – the faces of six world leaders. In each case our goal is to illustrate the
steps involved in fine-tuning a CNN.
Fine-tuning a CNN to label images for user-provided content categories

entails the following steps:

1. Gather images.
2. Deduplicate images.
3. Preprocessing: standardize image pixel size, remove small images, etc.

Additional preprocessing may occur later in pipeline depending on CNN
selection and initial training results.

4. Manually label a subset of the images for the content of interest.
5. Split into train/validation sets (possibly adding supplemental images).
6. Select a pretrained CNN.
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Table 7.1 Description of the Binary Computational Examples Data

True Pos True Neg
CNN-classifier Example N (train|validation) (train|validation)

Protest Ex. 1 199 99 (79|20) 100 (80|20)
John Legend Ex. 2 199 99 (79|20) 100 (80|20)
Anger Ex. 3 194 97 (77|20) 97 (77|20)
Disgust Ex. 3 241 121 (96|24) 120 (96|25)
Enthusiasm Ex. 3 1;468 734 (587|147) 734 (587|147)
Fear Ex. 3 97 49 (38|10) 48 (39|10)
Sadness Ex. 3 874 437 (349|88) 437 (349|88)

7. Adjust the last layer of the CNN for the number of classes.
8. Set initial hyperparameters.
9. Train the model and check accuracy using validation set.
10. Adjust hyperparameters or try different initial pretrained weights and

retrain/validate.
11. When satisfied with accuracy, apply the trainedmodel to unlabeled images.

In previous sections we describe how we gathered (step 1), deduplicated
(step 2),30 removed small images (step 3), and manually tagged our test BLM
images (step 4). We now describe the research decisions we made to construct
our train/validation sets for the seven binary classifiers. Table 7.1 summarizes
the number of images used in the train/validation sets for each task. In some
cases the corpus is relatively small (just 200 labeled images). This would be
insufficient for training a CNN from scratch, but we show that it can be effective
for fine-tuning an existing CNNwhen the task at hand is relatively simple. This
is because pretrained deep neural nets have already learned important generic
features of images.
In all of the examples we use balanced datasets, which means that we have

the same number of true positives and true negatives. This will rarely be the case
when training your own classifiers on real-world data: you are likely to have an
uneven split of positive and negative cases in a corpus. Nevertheless, in these
examples we use balanced datasets because it is much easier to discuss their
accuracy: we know that a model classifying our images at random would get it
right 50% of the time, meaning that we have an easy and intuitive baseline to

30 For a sample deduplication script see: https://github.com/norawebbwilliams/images_as_data/
blob/master/code/03-image-deduplication.py, last accessed April 26, 2020 (WebbWilliams and
Casas 2020).
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judge the results. When dealing with unbalanced classes, training models with
balanced datasets might help improve performance (Mountassir, Benbrahim
Hourda, andBerrada 2012) but it does not necessarily need to be the case (Burns
et al. 2011): trying both is advised. In all of the examples we use 80% of the true
positives and true negatives for training and 20% for validation. The following
sections describe the data used in each example in greater detail.

7.1 Data for Example 1: Predicting Images of Protests
We train this algorithm with 100 unique true positive and 99 unique true neg-
ative images of protests drawn from the full dataset of 8,148 images. The
majority of the true positive images contained multiple people standing outside
with signs, while the true negatives included a range of varied images from the
corpus, including headshots and political cartoons. An example compilation
image with four examples of true positives (top row) and four examples of true
negatives (bottom row) is available here.31 Alternatively, readers can view the
training data in the accompanying Code Ocean capsule.32

7.2 Data for Example 2: Predicting Images of an Opinion Leader
(John Legend)

To train a John Legend classifier, we used 28 unique positive images drawn
from our BLM corpus and combined them with another 71 images of him from
a Google image search. We then selected, as true negatives, similar images
(headshots and pictures of a single person standing) from our BLM dataset
(n = 50) and from the Internet (n = 50). For this example, we supplemented
the BLM data with images from the Internet in order to have enough data to
work with (28 true positive images is not much to learn from) and to train a
more general facial recognition algorithm. The images of John Legend in the
BLM data were almost exclusively headshots that pictured him alone against
a clear backdrop. If those were our true positive images and all of the true
negatives were of on-street protests, for example, the algorithm might learn to
recognize headshots, as opposed to the specific facial features of John Legend.
An example compilation image with four examples of true positives from the
BLM dataset (first row), four examples of true negatives from the BLM dataset
(second row), and four examples of true negatives selected from the Internet
(third row, pictures of Don Cheadle, Rihanna, Leonardo DiCaprio, and Danny

31 https://norawebbwilliams.github.io/ce_images/protest_examples.jpg, last accessed April 26,
2020.

32 https://doi.org/10.24433/CO.2462313.v1, last accessed April 26, 2020 (Webb Williams, Casas,
and Wilkerson 2020).
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Figure 7.1 Images in our dataset often trigger more than one emotion

Glover) is available here.33 Alternatively, readers can view the training data in
the accompanying Code Ocean capsule.34

7.3 Data for Example 3: Predicting the Emotions Images Evoke
in Viewers

Labeling images for evoked emotions (manually and automatically) is typi-
cally more difficult that labeling them for the presence of objects in large part
because emotions are much more subjective. Another complication is that an
image may trigger multiple emotional reactions. Our annotators found that
about 35% of the BLM images did not trigger any emotion, while about 50% of
the images evoked more than one emotion (see Figure 7.1a). Only about 19%
of the images evoked a single emotion. Figure 7.1b shows how frequently an
image that evoked a given emotion also evoked another emotion. For example,
images triggering anger were also very likely to trigger feelings of sadness and
disgust.
Prior research on visual sentiment analysis in computer science (e.g., Peng

et al. 2015) recommends training with images that “clearly” trigger each emo-
tion as the true positive cases. As a reminder, we originally had annotators rate
each image on a 0–10 scale for each emotion. For this example, we use the
average of those annotations to create binary labels in several steps. We first
retain only images with a score of 3 or higher for a given emotion. We then fur-
ther restrict the positive cases to emotionally distinct images by excluding those

33 https://norawebbwilliams.github.io/ce_images/face_recognition_example.jpg, last accessed
April 26, 2020.

34 https://doi.org/10.24433/CO.2462313.v1, last accessed April 26, 2020 (Webb Williams, Casas,
and Wilkerson 2020).
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or as a “clear” max class, meaning at least a 3-point difference with the 2nd

highest emotion score (in black)

where the difference between the highest and second highest scoring emotions
is less than 3. For the negative cases in the training data, we use images that
scored 0 across all of the emotions. Thus the goal is to compare clear cases of
a given emotion with cases that evoke no emotions at all. This should make
it easier for a computer vision algorithm to learn the image features that are
predictive of each emotion. The drawback is that this procedure significantly
reduces the size of the training set from over 8,000 unique images to 97 true
positives for anger, 121 for disgust, 734 for enthusiasm, 49 for fear, and 437 for
sadness (see Figure 7.2). For each emotion we complement the positive training
set with an equal number of randomly drawn images that evoked no emotion
(true negatives). Asking an algorithm to predict the emotions that a wide vari-
ety of images evoke with such a small number of cases is a tall order. Given
the relatively larger numbers of true positive images evoking enthusiasm and
sadness, we would expect to achieve better accuracy for these emotions. Nev-
ertheless, as we discuss in the results section, state-of-the-art CNNs might not
be suited for addressing some complex questions of interest to social scientists
(such as predicting evoked emotions).

7.4 Directory Structure and Code for Fine-Tuning
After collecting images and setting the train/validation split for the binary clas-
sifiers, we structure the images for each of the examples using the following
directory structure.

� “train”: contains the images used for training, with subdirectories for:
� “negative”: images that DON’T have the outcome we want to predict

(e.g., do not have a protesting crowd, John Legend, or images evoking
the emotion of interest)

� “positive”: images that DO have the outcome of interest
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� “val”: contains images used only to validate out of sample accuracy, with
subdirectories for:
� “negative”: images that DON’T have the outcome we want to predict

(e.g., do not have a protesting crowd, John Legend, or images evoking
the emotion of interest)

� “positive”: images that DO have the outcome of interest

The directory structure distinguishes between the sample images that will be
used for training and the ones that will be used for validation, as well as the
true positives from the true negatives.
The data and the code to run these examples are available on two different

platforms – Github and Code Ocean. On both platforms the file structure is
the the same. On Github, data and code are available in this repository.35 The
data directory contains a separate folder with the images for each of the clas-
sifier examples (protest, legend, anger, disgust, enthusiasm, fear, sadness, and
world_leaders), as well as ACCURACY and MODELS folders to store infor-
mation about the accuracy of each CNN after each epoch as well as the best
performing model for each example.
The notebooks directory contains Jupyter Notebooks with the code for

running the examples, one Notebook for running the binary classifiers
(02_fine_tune_binary_models.ipynb) and another for running the multi-
class example (03_fine_tune_multiclass_model.ipynb) (Webb Williams and
Casas 2020). A functions script (00_functions.py) contains some helper func-
tions for image preprocessing and other tasks. To run these notebooks on your
own machine requires cloning the repository and having all of the software
and hardware requirements installed. As discussed in Section 2, a better alter-
native is to use a virtual machine (cloud computer) with all of the dependencies
already installed. We have made instructions available on how to use an AWS
EC2 instance that will allow you to do this. You can find the instructions in the
notes directory of the repository: 01-launch-use-ec2-aws-instances.md (Webb
Williams and Casas 2020).
For those who are not familiar with AWS or who would rather not go through

the process of setting up their own virtual instance, we have also made the code
available on Code Ocean,36 an online replication platform that will allow you
to run the code for free (for up to 10 hours a month if you sign up with a edu-
cational .edu email account) on a virtual machine that already has everything

35 https://github.com/norawebbwilliams/images_as_data, last accessed April 26, 2020 (Webb
Williams and Casas 2020).

36 https://doi.org/10.24433/CO.2462313.v1, last accessed April 26, 2020 (Webb Williams, Casas,
and Wilkerson 2020).
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needed installed. See Section 2 for information on how to take advantage of this
option. The data, code, and directory structure are the same on either option.
In the Jupyter Notebooks we use a Python package (PyTorch) and our own

helper functions to fine-tune an open-source CNN. PyTorch is one of many
framework options for deep learning in Python. Other options include Tensor-
flow (developed by Google) and Keras. We use PyTorch for fine-tuning for
several reasons. The “torchvision” module makes it easy to obtain and load
pretrained CNNs. Table 4.1 (based on the official PyTorch documentation37)
lists the large number of computer vision CNNs currently available with
torchvision. Second, it is easy to edit the layers of pre-trained CNNs in PyTorch.
This is essential for fine-tuning, where at a minimum the researcher needs
to adjust the number of classes predicted in the final layer. Another longer-
term consideration is that PyTorch is developed by Facebook. This means that
it has a strong base of support and incentives for keeping up with the latest
developments.

7.5 Binary Classification with Fine-Tuned ResNet-18 CNN
We fine-tune a pretrained CNN called ResNet-18 (He, Zhang, et al. 2015). As
a reminder from Section 4, Figure 7.3 compares the architecture of 5 different
ResNets. All of them start with a convolutional layer that includes 64 7 � 7
filters (conv1) followed by a max-pooling step. All of them also contain the
same 4 convolutional “blocks” (conv2_x, conv3_x, conv4_x, and conv5_x).
However, each has a different number of layers in each block.

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2

3×3, 64

3×3, 64
×2

3×3, 64

3×3, 64
×3





1×1, 64

3×3, 64

1×1, 256



×3





1×1, 64

3×3, 64

1×1, 256



×3





1×1, 64

3×3, 64

1×1, 256



×3

conv3 x 28×28
3×3, 128

3×3, 128
×2

3×3, 128

3×3, 128
×4





1×1, 128

3×3, 128

1×1, 512



×4





1×1, 128

3×3, 128

1×1, 512



×4





1×1, 128

3×3, 128

1×1, 512



×8

conv4 x 14×14
3×3, 256

3×3, 256
×2

3×3, 256

3×3, 256
×6





1×1, 256

3×3, 256

1×1, 1024



×6





1×1, 256

3×3, 256

1×1, 1024



×23





1×1, 256

3×3, 256

1×1, 1024



×36

conv5 x 7×7
3×3, 512

3×3, 512
×2

3×3, 512

3×3, 512
×3





1×1, 512

3×3, 512

1×1, 2048



×3





1×1, 512

3×3, 512

1×1, 2048



×3





1×1, 512

3×3, 512

1×1, 2048



×3

1×1 average pool, 1000-d fc, softmax

FLOPs 1.8×10
9 3.6×10

9 3.8×10
9 7.6×10

9 11.3×10
9

18-layer

3×3, 64

3×3, 64
×2

3×3, 128

3×3, 128
×2

3×3, 256

3×3, 256
×2

3×3, 512

3×3, 512
×2

1.8×10
9

average pool, 1000-d fc, softmax

Figure 7.3 Architecture of the Convolutional Neural Nets trained by He,
Zhang, et al. 2015, collectively known as ResNets.

37 https://pytorch.org/docs/stable/torchvision/models.html, last accessed April 26, 2020 (torchvi-
sion.models— PyTorch Master Documentation 2020).
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As previously discussed, the main step for fine-tuning a pretrained CNN is
to alter the last fully connected layer to predict the desired number of outcome
classes. ResNet-18 was originally developed to predict the 1,000 classes of the
ImageNet competition corpus. In our binary examples, we are only interested
in predicting whether an image belongs to a single class or not. In Figure 7.3
(in red), the last fully connected layer is a vector of 1,000 weights. We replace
this last layer with a new 1� 1� 2 fully connected layer. The initial weights of
this 1 � 1 � 2 layer are randomly assigned from a Gaussian distribution with
a standard deviation of 0.01. To use ResNet-18 we also take a few additional
image preprocessing steps, mainly resizing all of our images to 224 � 224
pixels (ResNet’s original input volume from ImageNet).
As discussed in Section 4, we experiment with many hyperparameter set-

tings to see which combination garners the highest predictive accuracy. We
fix two hyperparameters, the gamma (=0.01) suggested by the literature (Tai
and Liu 2016), and a step size that allows us to reduce the learning rate sev-
eral times during training (=7). We then experiment with different values for
several other hyperparmeters (learning rate, momentum factor, and batch size).
We draw on the results of these experiments to decide which hyperparameter
settings to vary in our main tests. Importantly, the hyperparameter settings that
work best for one classification task are not necessarily the best for another
task.
To illustrate the impact of different learning rates (0.01, 0.001, and 0.0001),

momentum factors (0.7 and 0.9), and image batch sizes (1, 4), we trained 12
versions of one of the binary classifiers (the model predicting images of John
Legend) using 50 epochs. As a reminder, the learning rate specifies how much
parameter values change as they are updated in each epoch (see Section 4.4
for more details). Larger learning rate values mean bigger “jumps” through the
parameter space. Higher momentum factor values givemore weight to previous
gradient information, decreasing the likelihood of spending too long explor-
ing suboptimal maximums. Finally, smaller image batch sizes decrease the
likelihood of overfitting (but also increase the time required to train the model).
In Figure 7.4, loss represents the difference between the predicted and the

actual class scores at each epoch (softer green-purple lines, values indicated in
the left y-axis). Accuracy represents the proportion (or percentage) of correct
model predictions (stronger green-purple lines, values indicated in the right
y-axis). In the subfigures, loss and accuracy are averaged across batches to
produce a single epoch score. Ideally, loss should decrease while accuracy
increases as model fit improves with each epoch. We see that the model with
a big jump learning rate (0.01) and a momentum factor giving more weight
to recent gradient information (0.9) has the highest loss (0.17) and lowest
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Minimum Loss = 0.1

Maximum Accuracy = 85%

Minimum Loss = 0.17

Maximum Accuracy = 60%

Momentum = 0.7
Learning Rate = 0.01

Momentum = 0.9
Learning Rate = 0.01

0 10 20 30 40 50 0 10 20 30 40 50

0
27.18
54.36
81.54

108.72
135.9

163.08
190.26
217.44
244.62

0

25

50

75

100

Number of Iterations

L
o
s
s

A
c
c
u

ra
c
y
 (%

)
Batch Size

1
4

Figure 7.4 Hyperparameter Test: Trying different learning rates, momentum
factors, and batch sizes. Results for models with a 0.01 learning rate.
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Figure 7.5 Loss and Accuracy for different learning rates, momentum
factors, and batch sizes. Results for models with a .001 and .0001 learning

rate

accuracy (60%). This is probably because the pretrained model is already close
to finding the most accurate model and big “jumps” through the parameter
space do not help.
Figure 7.5 also indicates that models with the intermediate learning rate of

0.001 perform better than those with faster and slower rates. It is also interesting
to note that models with a higher momentum factors tend to do better. Finally,
batch size also does not appear to have a consistent effect on model accuracy.
Informed by these results, we test three intermediate learning rates when fine-
tuning the seven other binary classifiers: 0.005, 0.001, and 0.0005. Because the
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initial results were indeterminate as to the best momentum factor and batch size,
we will continue to vary these hyperparameters. As for the appropriate number
of epochs, most of themodels reached convergence after about 10 epochs.More
than 50 would seem to be a waste of computing power in this case.

7.6 Results
We are now ready to fine-tune ResNet-18 to build each of the seven binary
classifiers. For each classifier, we replace the last fully connected 1� 1� 1000
layer with a layer fitting our needs (a 1� 1� 2 layer for the binary classifiers)
and we retrain the CNN for 50 epochs using a 0.1 gamma and a step size of 7.
For each of the seven classifiers we experiment with three intermediate learning
rates (0.0005, 0.001, and 0.005), two momentum factors (0.9 and 0.7), and two
batch sizes (1 and 4 images).
We judge performance on the validation set using four common measures

in machine learning: recall, precision, F1-score, and accuracy. As a reminder,
precision is the proportion of predicted positive cases that are correct (when
compared to a set of gold standard labels); recall is the proportion of true
positive cases that are correctly predicted to be positive cases; the F1-score
provides a performance summary accounting for both precision and recall�
2 �

precision � recall
precision C recall

�
; and accuracy is the overall proportion of predicted

positive and negative cases that are correctly predicted. As a reminder, these
are all balanced sets with the same number of true positives and negatives, so
if the CNNs were predicting at random they would be getting it right 50% of
the time. This 50% baseline is the one we need to keep in mind when judging
the results.
The best results from our experiments for each classifier task are reported in

Table 7.2. The first thing to note is that accuracy varies substantially across the
different tasks, from 1.00 for the protest classifier to 0.64 for the enthusiasm
one. A second point is that the best performing learning rate, batch size, and
momentum factor varies across the tasks.38 For example, the protest classifier
achieved the best accuracy with a momentum factor of 0.9, while a momentum
factor of 0.7 was best for the disgust classifier.

7.6.1 Object Recognition Results

Fine-tuning Resnet-18 to predict protest images produced excellent results
(accuracy, precision, and recall of 100%) with just 100 true positive and 100

38 Readers replicating these efforts will obtain slightly different results because the image batches
used at each iteration are randomized.
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Table 7.2 Best Results for Fine-Tuning Experiments

F1- Learning Momentum Batch
Classifier Accuracy Score Precision Recall Rate Factor Size

Protest 1.00 1.00 1.00 1.00 0.0005 0.9 1
John 0.92 0.92 0.95 0.90 0.0005 0.9 1
Legend
Anger 0.70 0.71 0.68 0.75 0.0050 0.9 4
Disgust 0.71 0.68 0.75 0.62 0.0005 0.7 4
Fear 0.70 0.67 0.75 0.60 0.0050 0.9 1
Enthusiasm 0.63 0.61 0.64 0.58 0.0005 0.7 4
Sadness 0.68 0.71 0.64 0.78 0.0005 0.9 1

true negative training examples. Of course, this is just one experiment and not
necessarily representative of how well a fine-tuned CNN will perform in pre-
dicting all other new labels. The positive and negative cases in this example
were relatively distinct. In other cases, for example distinguishing between
images of parade crowds and protesting crowds, or distinguishing between a
broad range of protest activities (e.g., a Greenpeace protester hanging from
Mt. Rushmore versus a marching crowd), training an accurate classifier might
prove more challenging.

7.6.2 Facial Recognition Results

The results for the John Legend classifier (92% accuracy, precision of 95%, and
recall of 90%) are also very good, particularly given the small training sample
(100 true positives and 100 true negatives). Overall accuracy is slightly lower
than for protests (100%) and for Rekognition (99.4%). These differences in
overall accuracy illustrate the benefits of having more images for train/test-
ing. We assume that Rekognition is trained on a very large set of celebrity
face images. In addition, the Rekognition algorithm uses face detection to seg-
ment each individual face in an image whereas our task did not entail any
image segmentation. Why use fine-tuning for this task then, if Rekognition
was more accurate? The simple answer is that Rekognition may not have a
label or a substantial number of training examples for your person of interest.
When this is the case, fine-tuning will be a better, and still highly accurate,
option.
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7.6.3 Visual Sentiment Results

Given that the baseline performance for a binary classifier with a balanced
train-validation set is 50% (a coin toss), all our example classifiers on evoked
emotion are only somewhat successful, with F1-scores ranging from 68%
to 71%. This is clearly not as accurate as the object and facial recognition
classifiers.
The emotions tasks are inherently more challenging than recognizing an

object or face. Computer vision scholars have been able to build similarly
accurate (60–70% accuracy) binary emotion classifiers using very large train-
ing corpora (Peng et al. 2015), but the images used for these classifiers have
very simple compositions (see examples from the Emotion6 dataset available
here).39 Politically relevant images that people share online are often more
complex. For example, our BLM dataset includes images of cartoons, images
with several elements, and images combining visuals with text (see examples
here40 or readers can view the training data in the accompanying Code Ocean
capsule).41 This greater diversity of images means that larger training sets of
politically relevant images and possibly more complex models (for example,
models that incorporate object detection, facial detection, and text analysis)
may be needed to make substantial progress in predicting the emotional impact
of political images. Although challenging, the potential research benefits of
such a trained model are substantial.

7.7 Using a Fine-Tuned Classifier to Label New Images
The final step in an application of fine-tuning is to use the trained and validated
model to label additional images. This step is no different than applying any
trained off-the-shelf algorithm to new data. Code available in the Github repo
demonstrates how to load a trained model and apply it to a different set of
images.42

7.8 Extended Application: Multilevel Classifier
What if a researcher wanted to predict whether an image belonged to one
of many possible classes rather than a single class? With our fine-tuning

39 https://norawebbwilliams.github.io/ce_images/emotion6_anger_example.jpg, last accessed
April 26, 2020.

40 https://norawebbwilliams.github.io/ce_images/blm_anger_example.jpg, last accessed April 26,
2020.

41 https://doi.org/10.24433/CO.2462313.v1, last accessed April 26, 2020 (Webb Williams, Casas,
and Wilkerson 2020).

42 https://github.com/norawebbwilliams/images_as_data/blob/master/code/04-apply-finetuned-
cnn-to-new-images.py, last accessed April 26, 2020 (Webb Williams and Casas 2020).
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framework, the only difference to train a multiclass classifier is in the adjust-
ment to the final layer of the pretrained Resnet-18. Instead of adjusting the last
layer of the algorithm from 1000 categories to 2, a researcher would adjust the
algorithm into the number of classes appropriate for their case. We test a multi-
class classifier using a toy corpus of images of world leaders from six countries
(the USA, Venezuela, South Africa, Japan, Kazakhstan, and Spain). Thus, in
this case we adjust the last layer of Resnet-18 to six classes.
We collected 50 images of each leader from online sources and then cropped

them to include only the face (see examples here43 or readers can view the train-
ing data in the accompanying Code Ocean capsule).44 The example code for a
multilevel classifier is available in the accompanying Github repo, in either the
code45 or the notebook directory46 or on Code Ocean.47 Aswith the binary clas-
sifiers, it is worth experimenting with different hyperparameter combinations
to improve accuracy.

7.8.1 Directory Structure for Multilevel Classifier

For the binary models, each subdirectory in the “data” directory contained a set
of true positive and true negative images for the binary feature of interest. For
a multilevel classifier, instead of having subdirectories of images that do and
do not include a protest, each subdirectory includes images of only one of the
six leaders (as illustrated below). Once again, we use 80% of the images for
training and 20% for testing.

� “train”: contains the images used for training, with subdirectories for:
� “USA”: 40 images of Barack Obama
� “VEN”: 40 images of Nicolas Maduro
� “ZAF”: 40 images of Jacob Zuma
� “JPN”: 40 images of Shinzo Abe
� “KAZ”: 40 images of Nursultan Nazarbayev
� “ESP”: 40 images of Mariano Rajoy

� “val”: contains images used for testing, with subdirectories for:

43 https://norawebbwilliams.github.io/ce_images/leaders-examples.jpg, last accessed April 26,
2020.

44 https://doi.org/10.24433/CO.2462313.v1, last accessed April 26, 2020 (Webb Williams, Casas,
and Wilkerson 2020).

45 https://github.com/norawebbwilliams/images_as_data/blob/master/code/02-fine-tune-multi
class-model.py, last accessed April 26, 2020 (Webb Williams and Casas 2020).

46 https://github.com/norawebbwilliams/images_as_data/blob/master/notebooks/02-fine-
tune-multiclass-model.ipynb, last accessed April 26, 2020 (Webb Williams and Casas
2020).

47 https://doi.org/10.24433/CO.2462313.v1, last accessed April 26, 2020 (Webb Williams, Casas,
and Wilkerson 2020).
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� “USA”: 10 images of Barack Obama
� “VEN”: 10 images of Nicolas Maduro
� “ZAF”: 10 images of Jacob Zuma
� “JPN”: 10 images of Shinzo Abe
� “KAZ”: 10 images of Nursultan Nazarbayev
� “ESP”: 10 images of Mariano Rajoy

7.8.2 Multilevel Classifier Results

After just 50 epochs, the model achieved perfect accuracy, precision, and recall
for all six classes. Admittedly, we simplified the task by cropping the images
so that they focused exclusively on the leaders’ heads and faces. Nevertheless,
we still find this success rate impressive. With minimal training (a small num-
ber of examples and epochs), the algorithm successfully distinguished among
six different people who were not included as part of the original ResNet-18
training data.

8 Legal and Ethical Concerns in Using Images as Data
In this section we encourage readers to consider the legal and ethical impli-
cations of using images in research. Many image analysis projects raise
competing considerations of research reproducibility, transparency, privacy,
risks of causing harm, and copyright protections. Researchers need to be aware
of potential legal and ethical issues related to the gathering, storing, and pro-
cessing of images and should consult with their organization’s legal team, if
available, to ensure compliance with current law and best practices. Institu-
tional Review Boards (IRBs) are an important first and necessary step, but
their policies may lag behind ethical best practices for social media research
(Moreno et al. 2013). For this reason we also recommend reading through the
resources curated by the Association for Computing Machinery Conference on
Fairness, Accountability, and Transparency (ACM FAccT).48

8.1 Fair Use of Copyright Protected Images
Social media terms of service generally acknowledge that the person or orga-
nization that posts content (text, image, video, etc.) retains ownership of that
content. This helps networks avoid liability for what is posted on their sites.
Courts have also affirmed this copyright protection in cases involving other
parties’ commercial use of such images (Ax 2013). However, in the United
States (Title 17, Section 107 of the US Code), fair use of protected content

48 https://facctconference.org/links.html, last accessed April 26, 2020 (ACM FAccT - Links 2020).
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for purposes such as “criticism, comment, news reporting, teaching (including
multiple copies for classroom use), scholarship, or research” is protected.
Researchers (and editors) should nevertheless proceed with caution because
copyright violation claims are considered on a case-by-case basis and because
policies may vary across domains and legal contexts.
For example, the European Union is currently considering changes to its

“Directive on Copyright in the Digital Single Market.” Proposed changes to
Articles 11 and 13, for example, would strengthen copyright protections for
those who create material later shared online. These changes seem to be pri-
marily directed at commercial uses, but the policies had not been finalized at the
time of this writing. Certainly the safest course of action, one consistent with
opinions expressed in public surveys, is for researchers to either obtain permis-
sion or alter images before including them in published works. One advantage
of using social media is that it can be relatively easy to contact account holders
for permission.
In addition, uses that are legal are not always ethical. We highlight three

additional concerns related to image research that fall primarily in the realm of
ethics (at least for now): privacy, harm, and social algorithmic bias.

8.2 Privacy
Polls indicate that the public is generally supportive of academic research but
that it is also concerned about protecting privacy when it comes to social media
data. Surveying social media users, Williams, Burnap, and Sloan (2017) found
that “84% of respondents were not at all or only slightly concerned” (p. 1156)
about the use of their information in university research settings. However,
“[j]ust under 80 per cent of respondents agreed that they would expect to be
asked for their consent before their Twitter posts were published in academic
outputs. Over 90 per cent of respondents agreed that they would want to remain
anonymous in publications stemming from Twitter research based in university
settings” (Williams, Burnap, and Sloan 2017, p. 1156).
Recent scandals involving academic researchers have drawn renewed atten-

tion to such privacy concerns (see the scandals referenced by M. Rosenberg,
Confessore, and Cadwalladr 2018 and Suppe 2018). In partial response, some
online social networks have imposed restrictions on data collection. Instagram,
for example, the popular social network owned by Facebook where users post
images almost exclusively, now has a strict set of policies for those who use
their API (“platform policy,” “terms of service,” or “terms of use”).49 Their

49 www.instagram.com/developer/, last accessed April 26, 2020.
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policy states, for example, that “you cannot use the API Platform to crawl or
store users’ media without their express consent.”
As with copyright protections, laws on data privacy will vary by country

and legal context. For example, any researcher collecting or using data from
Europe also needs to be aware of recent new requirements from the European
Union’s General Data Protection Regulation (GDPR).50 The GDPR still allows
for research-oriented use of personal data, but scholars should seek legal advice
or read up on backgroundmaterials tomake sure their project is properly carried
out.51

Once images have been collected, researchers also need to be attentive to
how they are stored and shared. This is one place where scientific concerns
about research reproducibility can conflict with ethical concerns about privacy.
What are the privacy implications of publicly sharing images used in research,
especially when those images are categorized by topic or event?
For example, Twitter images are already in the public sphere and available

for anyone to collect. Does aggregating them for an academic research project
increase the potential for harm or violate privacy norms? This could be the
case if, for example, the results from a project using CNNs to predict sexual
orientation were shared publicly, regardless of whether the images contained
additional identifying information or not. For such a project, we believe that
prior consent is required before sharing the images because someone might be
dangerously “outed.”
On the other hand, creating and sharing a collection of protest images drawn

from Twitter for research purposes seems less likely to increase harm because
people who participate in public protests can reasonably expect to be pho-
tographed. Of course, such a project would arguably become unethical (absent
user consent) if the objective was to develop an algorithm making it easier to
identify individual protest participants. The development and sharing of such
technologies could ultimately facilitate government surveillance and repres-
sion (Introna and Wood 2004). Owen (2018) provides a helpful popular press
account of the ethics of automatic facial recognition.
Another privacy issue arises with the use of off-the-shelf tools like Ama-

zon’s Rekognition. When they use these tools to label images, researchers
may effectively transfer protected content to a commercial service. It is our
understanding that images uploaded to such services are added to the service’s

50 https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/
2018-reform-eu-data-protection-rules_en, last accessed April 26, 2020 (European Commission
2020).

51 See, for example, Lancaster University (2020) and University of Oxford (2020).
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repository, along with the assigned labels. This is probably also the case for
other commercial services that enable researchers to train CNNs for specific
image tasks (along the lines of the fine-tuning discussed in this Element),
such as Google’s AutoML Vision.52 We cannot recommend these services to
researchers concerned about protecting privacy if they do not offer the option
of permanently deleting data and results. Open-source taggers that researchers
download and run locally, such as face_recognition (Geitgey 2020), do not
present the same privacy concerns.

8.3 Causing Harm
Researchers also need to be concerned about other harms associated with image
sharing besides violations of individual privacy. Here we discuss two related
areas of concern: harm caused by sharing images and harm caused to those who
might be exposed to disturbing images during the research process.
Most social media services attempt to filter content that is especially offen-

sive, including sexually explicit images and images containing graphic violence
or death. In some cases, these images are posted with the implicit intent of
causing harm (for example, what is colloquially referred to as “revenge porn”).
Researchers need to seriously consider whether their research projects might
inadvertently increase harm by preserving harmful images or increasing the
likelihood of exposure to such explicit images.
In addition to general sharing issues, the harm may be more direct when, for

example, a researcher employs undergraduate research assistants or a crowd-
sourcing service. Prescreening images before assigning them, establishing a
minimum hiring age, and briefing research assistants about what they may
encounter can all help. Mechanical Turk, for example, requires specific lan-
guage53 if a task may include explicit content: “(WARNING: This HIT may
contain adult content. Worker discretion is advised.)”
Similar warnings may be appropriate when images are shared for the pur-

poses of replication/reproducibility. Alternatively, a researcher may choose to
exclude certain images from a project, or filter the images that are used as
illustrations of the methodology. For example, our original binary emotions
classifiers image dataset included some explicit images (14 images containing
either explicit sexual nudity or graphic violence). These images were valu-
able for training and testing the classifiers (specifically their ability to detect
“disgust” or “fear”); however, we exclude them from the data that accompany
the replication files in Github and Code Ocean.

52 https://cloud.google.com/vision/, last accessed April 26, 2020.
53 www.mturk.com/acceptable-use-policy, last accessed April 26, 2020.
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One approach to balancing reproducibility and privacy concerns is to provide
only the information needed to recreate the dataset used in the study. In the
case of Twitter, each tweet has a unique id. Instead of sharing the collected
tweets and their associated media (images, video, etc.) from a project, the
researcher can share the list of collected tweet ids (for an example see Clarke
and Kocak [2018]). This approach offers additional privacy protection to Twit-
ter users. If they decide to delete their tweets, their posts will not continue to be
shared in a researcher’s dataset. On the other hand, this approach raises poten-
tial issues of reproducibility. If the deleted tweets drove the results of the initial
study, the findings might not replicate. Similarly, an unethical researcher could
claim that a set of results would hold with a complete replication, or could even
create and subsequently delete tweets to support a particular result.

8.4 Social Algorithmic Bias
Finally, an important research agenda is demonstrating that machine learning
algorithms (including computer vision algorithms) are only as good as their
training data and classification schemes. If training data reflect conscious or
unconscious biases, the trained systems will learn that bias. Most concerning
is a potential for these algorithms to not only reproduce societal and cognitive
biases but to exacerbate them. For example, Zhao et al. (2017) finds that AI
trained on a set of Internet images was likely to assign women to the activity of
“cooking” at much higher rates than occurred in the original data set (cooking
was more about 33% more likely to include women than men in the train data;
this rate rose to 68% with the trained model). In another example, the Gen-
der Shades54 project (Buolamwini and Gebru 2018) shows that AI systems are
much worse at correctly identifying gender with nonwhite faces.
Researchers need to understand why these biases can occur and think care-

fully about the potential social biases of their own research designs. Google’s
answer to the controversy of its image tagger returning the label “gorilla” when
applied to black faces was to suppress the tag (Simonite 2018). While this
solution might blunt some criticism, it does not solve the problem. To prevent
social bias, researchers should be aware of the issues and continue to push their
own work to be ethical and free from biases. For further high-level reading on
the topic, we suggest Broussard (2018), Kearns and Roth (2019), and O’Neil
(2017).

54 http://gendershades.org/, last accessed April 26, 2020 (Gender Shades 2020).
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9 Conclusion
Images are an important part of everyday political and social life and they
deserve more attention from social scientists. Prior research demonstrates that
images can be a powerful form of communication. Compared to text, visuals
are more likely to capture people’s attention, trigger strong emotional reactions,
and improve information recall. The computer vision methods discussed in this
Element can be used to study images at scale, making it possible to explore
the impact of images in real-world contexts (as opposed to more limited and
controlled experimental settings).
There have been tremendous advances in computer vision research over

the last decade and resources such as Amazon’s Rekognition service and the
PyTorch deep-learning framework mean that non–computer scientists can now
take advantage of these developments. Many commercial and open-source
off-the-shelf autotaggers have already been trained to predict a very large
number of popular image labels. These off-the-shelf options may be perfectly
suitable for many image-related research projects, depending on the task. A
plus is that they do not require manually labeled examples except for valida-
tion, but potential downsides include omitted labels, questionable classification
reproducibility, and copyright and privacy violations.
Fine-tuning can be a better option when the labels and underlying data of an

autotagger do not match the goals of a research project. As with any machine
learning task, the success of a fine-tuning effort will depend on the complexity
of the task, the representativeness of the training data, and modeling deci-
sions the researcher must make along the way. Pretrained CNNs lower the bar
in terms of the investment required to obtain labeled images in order to test
theoretical questions of interest, greatly expanding research opportunities.
Because the goal of image classification is typically prediction rather than

explanation, researchers are free to experiment with a large number of available
hyperparameters and open-source CNNs. Even if an adjustment only leads to
a modest improvement, it is still an improvement, and many modest improve-
ments can make a real difference in accuracy. We have demonstrated some
implications of hyperparameter decisions, but this is an area where constant
experimentation via grid search is warranted.
Some labeling tasks, such as predicting emotional responses, are more dif-

ficult than others because they are subjective or because the relevant attributes
(the features that produce the emotional response) are less distinguishable using
pixel-level information alone. Building a model that can capture the general
features of diverse images that make people angry is substantially more diffi-
cult than recognizing the fairly standard facial features of a given celebrity. In
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the examples presented in this Element, our fine-tuning produced fairly unsuc-
cessful CNNs for this visual sentiment analysis task. With more training data
and more involved pipelines, it is possible that these complicated classes will
become easy to predict. However, the challenges of visual sentiment analysis
also reveal the potential limits of these techniques. Automated image analy-
sis for highly subjective labels may be beyond what is possible with current
methods.
Our main goal in this introduction to computer vision methods is to inspire

social scientists to devote more attention to the role of large quantities of dig-
itized visuals in political and social life. An important aspect to conducting
this research is ethical concerns, which can arise at every stage of an images-
as-data project. As a research community, we should always be aware of the
potential for harm that our studies might bring, from violating privacy norms
to reinforcing social biases.

10 Data Availability Statement
The data and the code to run the examples given in this Element are available
on Github and Code Ocean.
Github: https://github.com/norawebbwilliams/images_as_data
Code Ocean: https://doi.org/10.24433/CO.2462313.v1
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